alpine valleys
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 22)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Emmanuelle Santoire ◽  
Jean Desroche ◽  
Romain Garcier

2021 ◽  
Vol 2 ◽  
pp. 133-157
Author(s):  
Martin Magnes ◽  
Wolfgang Willner ◽  
Monika Janišová ◽  
Helmut Mayrhofer ◽  
Elías Afif Khouri ◽  
...  

Aims: We studied the syntaxonomic position, biodiversity, ecological features, nature conservation value and current status of dry grasslands investigated by Josias Braun-Blanquet more than 60 years ago. Study area: Inner-alpine valleys of Austria. Methods: We sampled 67 plots of 10 m2, following the standardized EDGG methodology. We subjected our plots to an unsupervised classification with the modified TWINSPAN algorithm and interpreted the branches of the dendrogram syntaxonomically. Biodiversity, structural and ecological characteristics of the resulting vegetation units at association and order level were compared by ANOVAs. Results: All the examined grasslands belong to the class Festuco-Brometea. From ten distinguished clusters, we could assign four clusters to validly published associations, while the remaining six clusters were named tentatively. We classified them into three orders: Stipo-Festucetalia pallentis (Armerio elongatae-Potentilletum arenariae, Phleo phleoidis-Pulsatilletum nigricantis, Medicago minima-Melica ciliata community, Koelerio pyramidatae-Teucrietum montani), Festucetalia valesiacae (Sempervivum tectorum-Festuca valesiaca community); Brachypodietalia pinnati (Astragalo onobrychidis-Brometum erecti, Agrostis capillaris-Avenula adsurgens community, Anthericum ramosum-Brachypodium pinnatum community, Ranunculus bulbosus-Festuca rubra community, Carduus defloratus-Brachypodium pinnatum community). Conclusions: The ten distinguished dry grassland communities of the Austrian inner-alpine valleys differ in their ecological affinities as well as their vascular plant, bryophyte and lichen diversity. We point out their high nature conservation importance, as each of them presents a unique habitat of high value. Taxonomic reference: Names of vascular plants, bryophytes and lichens follow Fischer et al. (2008), Frahm and Frey (2004) and Nimis et al. (2018), respectively. Syntaxonomic reference: Names of orders and classes follow Mucina et al. (2016), references for associations and alliances are given in the text. Abbreviations: ANOVA = analysis of variance; DCA: detrended correspondence analyses; EDGG: Eurasian Dry Grassland Group; EIV: ecological indicator value; FL: Fließ; GR: Griffen; GU: Gulsen; KA: Kaunerberg; LA: Laudegg castle in Ladis; MA: Marin; NM: Neumarkt in der Steiermark; OM: Obermauern; PÖ: Pöls; PU: Puxer Loch; TWINSPAN = Two-way indicator species analysis; ZS: Zinizachspitze.


2021 ◽  
Vol 61 (1) ◽  
Author(s):  
Danijela Strle ◽  
Matej Ogrin

A lowered snow line in Alpine valleys as a local weather phenomenon often varies from one valley to another. The relief morphology of the valleys and the intensity of precipitation play a crucial role in the variation. In Slovenia certain valleys are more susceptible to this phenomenon than others, one such example being the Planica Valley. This article examines the occurrence of a lowered snow line in the Planica Valley and the Vrata Valley during the winter seasons of 2015/2016 and 2016/2017. Precipitation events accompanying the occurrence of a lowered snow line were analyzed, and data on temperature and precipitation were included in the analysis. Results showed a striking degree of congruence of the phenomenon in both valleys.


2021 ◽  
Author(s):  
Juerg Schmidli ◽  
Julian Quimbayo-Duarte

<p>In fair weather conditions, thermally driven local winds are dominant feature of the atmospheric boundary layer over complex terrain. They may dominate the wind climatology in deep Alpine valleys resulting in a unique wind climatology for any given valley. The accurate forecasting of these local wind systems is challenging, as they are the result of complex and multi-scale interactions. Even more so, if the aim is the accurate forecasting of the winds from the near-surface to the free atmosphere, which can be considered a prerequisite for the accurate prediction of mountain weather.  This study investigates the skill of the COSMO model at 1.1 km grid spacing in simulating the thermally driven local winds in the Swiss Alps for a month-long period in September 2016. The study combines the evaluation of the surface winds in several Alpine valleys with a more detailed evaluation of the wind evolution throughout the depth of the valley atmosphere for a particular location in the Swiss Rhone valley, the town of Sion. The former is based on a comparison with observations from the operational measurement network of MeteoSwiss, while the latter uses data from a wind profiler stationed at Sion airport. It is found that the near-surface valley wind is generally well represented for the larger Alpine valleys, except for the Rhone valley at Sion. The reasons for the poor skill at Sion are investigated and shown to be attributable to several factors. One of which is a too strong cross-valley flow reaching down to the valley floor and displacing the daytime up-valley wind. A second factor is the particular local valley geometry. It is shown that an increase of the initial soil moisture and the use a finer horizontal grid spacing results in an improved simulation of the diurnal valley wind at Sion.</p>


Author(s):  
Carlos Ivanhoe Gil Burgoin

Northern Tepehuan (ISO 639-3: ntp) is one of the 68 native linguistic groups1 currently spoken in Mexico according to the National Institute of Indigenous Languages (INALI 2008). As is the case with many indigenous languages, Northern Tepehuan is under serious threat of disappearance during the next decades as it is spoken by fewer than 9000 people (Carrillo 2011: 6) whose historical background has been one of social and linguistic marginalization. The Ódami – as the speakers of the language call themselves – live in the alpine valleys of an isolated region known as Sierra Tarahumara, a section of the Sierra Madre Occidental, in Chihuahua State, Mexico. Saucedo Sánchez de Tagle (2004: 6–9) indicates that the heart of the current Ódami territory is in some sections of the Guadalupe y Calvo municipality, in the southernmost tip of Chihuahua (see Figure 1) but speakers also can be found in the surrounding municipalities of Balleza, Guachochi and Batopilas. Approximately 80% of Northern Tepehuan speakers live in small villages and rural settlements around the population nuclei of Baborigame, Nabogame, Llano Grande, Barbechitos and El Venadito (Saucedo Sánchez de Tagle 2004: 7). There are also some scattered speakers living in the region’s big cities of Chihuahua and Hermosillo.


2021 ◽  
Author(s):  
Benjamin Lehmann ◽  
Robert S. Anderson ◽  
Xavier Bodin ◽  
Pierre G. Valla ◽  
Julien Carcaillet

<p>Rock glaciers are one of the most frequent cryospheric landform in mid-latitude mountain ranges. They influence the evolution of alpine environments on short (years to decades) and long (centuries to millennia) time scales. As a visible expression of mountain permafrost [1] as well as an important water reserve in the form of ground ice [2], rock glaciers are seen as increasingly important in the evolution of geomorphology and hydrology of mountain systems in the context of climate change and deglaciation [3, 4]. On longer time scales, rock glaciers transport boulders produced by the erosion of the headwall upstream and downstream and therefore participate in shaping mountain slopes [5]. Despite their importance, the dynamics and origin of rock glaciers are poorly understood.</p><p>In this study, we propose to address two questions:</p><p>1) How does the dynamics of rock glaciers change over time?</p><p>2) What is the origin of rock glaciers and what is their influence on the evolution of alpine environments?</p><p>These two questions require an evaluation of the surface velocity field of rock glaciers by relating short and long time scales. To solve this problem, we combine complementary methods including remote sensing, geochronology with a mechanical model of rock glacier dynamics. We apply this approach to the rock glacier complex of the Vallon de la Route in the Massif du Combeynot (French alps).</p><p>In order to reconstruct the displacement field of the rock glacier on modern time scales, we used remote sensing methods (i.e., image correlation and InSAR). Over longer periods (10<sup>3</sup> to 10<sup>4</sup> years), we used cosmogenic terrestrial nuclides (TCN) dating. By applying this methodology to boulder surfaces at different positions along the central flow line of the rock glacier, from the headwall to its terminus, we will be able to convert the exposure ages into surface displacement. The use of dynamic modelling of rock glaciers [6] will allow us to relate the surface kinematics to short to long time scales. It will then be possible to discuss the age, origin of rock glaciers and how topo-climatic and geomorphological processes control their evolution in Alpine environment.</p><p> </p><p>[1] Barsch, D.: Rockglaciers. Indicators for the Present and Former Geoecology in High Mountain Environments, Springer series in physical environment vol. 16, Springer, Berlin, Heidelberg, 1996.</p><p>[2] Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers and mountain hydrology: A review, Earth-Sci Rev, 193, 66–90, 2019.</p><p>[3] Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to landslides from degrading permafrost into new lakes in deglaciating mountain ranges, Geomorphology, 293, 405–417, 2017.</p><p>[4] Knight, J., Harrison, S., and Jones, D. B.: Rock glaciers and the geomorphological evolution of deglacierizing mountains, Geomorphology, 324, 14–24, 2019.</p><p>[5] MacGregor, K.R., Anderson, R.S., Waddington, E.D.: Numerical modeling of glacial erosion and headwall processes in alpine valleys. Geomorphology 103 (2):189–204, 2009.</p><p>[6] Anderson, R. S., Anderson, L. S., Armstrong, W. H., Rossi, M. W., & Crump, S. E.: Glaciation of alpine valleys: The glacier–debris-covered glacier–rock glacier continuum. Geomorphology, 311, 127-142, 2018.</p>


2021 ◽  
pp. 1-12
Author(s):  
Alfio Viganò ◽  
Sandro Rossato ◽  
Silvana Martin ◽  
Susan Ivy-Ochs ◽  
Dario Zampieri ◽  
...  
Keyword(s):  
Ne Italy ◽  

ARCHALP ◽  
2021 ◽  
Vol 2020 (N. 5) ◽  
Author(s):  
Daniel Walser

In the Alpine valleys, life is under pressure. Since very few children live in these areas, schools in small towns such as Vrin in the Lumnezia valley (Grisons, Switzerland) are closing, and infrastructures and public life are more and more concentrated in larger centres. Moreover, communities behave differently nowadays: people live and move around the whole valley, and old villages are becoming residential areas. While most of the time architecture in urban areas is driven by the investors’ interest, things are different in the mountains. In the Alps, where statistics and the market are not leading criteria for constructing new buildings, architects can explore new directions and think about innovative and specific solutions that may accompany the development of living societies. The recent works by Gion A. Caminada in Valendas and Almens, the buildings by Capaul & Blumenthal or the architecture projects by Men Duri Arquint in Chur are but a few examples of a different way of looking at the opportunities that architecture may offer to Alpine communities.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Tiziana Trogu ◽  
Sabrina Canziani ◽  
Sara Salvato ◽  
Alessandro Bianchi ◽  
Irene Bertoletti ◽  
...  

Canine distemper (CD) is a fatal, highly contagious disease of wild and domestic carnivores. In the Alpine territory, several outbreaks have occurred in the past few decades within wild populations. This study investigated the presence of canine distemper virus (CDV) infections in wild carnivores in Lombardy, relating to the different circulating genotypes. From 2018 to 2020, foxes, badgers, and martens collected during passive surveillance were subjected to necropsy and histological examination, showing classical signs and microscopic lesions related to CDV. Pools of viscera from each animal were analysed by molecular methods and immunoelectron microscopy. Total prevalences of 39.7%, 52.6%, and 14.3% were recorded in foxes, badgers, and stone martens, respectively. A phylogenetic analysis showed that the sequences obtained belonged to the European 1 lineage and were divided into two different clades (a and b) according to the geographical conformation of alpine valleys included in the study. Clade a was related to the European outbreaks originating from Germany in 2006–2010, while clade b was closely related to the CDV sequences originating from northeastern Italy during the 2011–2018 epidemic wave. Our results suggest that CDV is currently well adapted to wild carnivores, mostly circulating with subclinical manifestations and without severe impact on the dynamics of these populations.


Sign in / Sign up

Export Citation Format

Share Document