Novel Gamma Ray Spectral Analysis for Logging-while-drilling

Author(s):  
I. Hooshyari Far ◽  
A. Kepic ◽  
M. Carson
2012 ◽  
Vol 8 (S291) ◽  
pp. 160-160
Author(s):  
Silvia Zane

AbstractSoft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are peculiar X-ray sources which are believed to be magnetars: ultra-magnetized neutron stars which emission is dominated by surface fields (often in excess of 1E14 G, i.e. well above the QED threshold).Spectral analysis is an important tool in magnetar astrophysics since it can provide key information on the emission mechanisms. The first attempts at modelling the persistent (i.e. outside bursts) soft X-ray (¡10 keV) spectra of AXPs proved that a model consisting of a blackbody (kT 0.3-0.6 keV) plus a power-law (photon index 2-4) could successfully reproduce the observed emission. Moreover, INTEGRAL observations have shown that, while in quiescence, magnetars emit substantial persistent radiation also at higher energies, up to a few hundreds of keV. However, a convincing physical interpretation of the various spectral components is still missing.In this talk I will focus on the interpretation of magnetar spectral properties during quiescence. I will summarise the present status of the art and the currents attempts to model the broadband persistent emission of magnetars (from IR to hard Xrays) within a self consistent, physical scenario.


2019 ◽  
Vol 887 (1) ◽  
pp. 13 ◽  
Author(s):  
F. Fana Dirirsa ◽  
S. Razzaque ◽  
F. Piron ◽  
M. Arimoto ◽  
M. Axelsson ◽  
...  

10.2118/748-g ◽  
1957 ◽  
Vol 210 (01) ◽  
pp. 89-92 ◽  
Author(s):  
N.L. Muench ◽  
J.S. Osoba
Keyword(s):  

2018 ◽  
Vol 854 (2) ◽  
pp. 99 ◽  
Author(s):  
J. Wu ◽  
C. J. Clark ◽  
H. J. Pletsch ◽  
L. Guillemot ◽  
T. J. Johnson ◽  
...  

2014 ◽  
Vol 54 (2) ◽  
pp. 533
Author(s):  
Paolo Bartelucci ◽  
Mauro Firinu ◽  
Anthony Jones ◽  
Ping Yan

Formation evaluation in low porosity, low salinity, and high temperature reservoirs poses many challenges. The environment is hostile to many logging tools due to their temperature limits and there is greater uncertainty related to petrophysical parameters compared with conventional formations. Additionally, in low porosity and low salinity reservoirs, resistivity contrast between hydrocarbon and water filled rocks is often missing. This extended abstract presents a case study from offshore WA where a petrophysical model has been created with logging while drilling measurements including spectroscopy data to improve estimation of mineralogy, clay volume and porosity, thereby reducing saturation evaluation uncertainty. Spectroscopy measurements can be analysed to derive dry weight elemental concentrations of various elements such as silicon, calcium, iron, and sulfur. These concentrations have been subsequently used as input to compute a multi-mineral petrophysical model using a least squares inversion technique. We demonstrate that spectroscopy can be used independently to obtain an accurate volume of clay instead of gamma ray, spontaneous potential, or porosity logs. Moreover, matrix properties such as grain density, which enhance the accuracy of porosity estimation derived from bulk density, are also derived from spectroscopy dataset. Good agreement with core validates the petrophysical model. Also demonstrated is how the petrophysical model reduces the uncertainty in clay volume and porosity, from which more accurate water saturation can be derived in these tight reservoirs. Calibrating the spectroscopy information to core data allows the mineralogical and geological model to be extended to the intervals where core data are not available.


2020 ◽  
Author(s):  
Anders Lindanger ◽  
Martino Marisaldi ◽  
Nikolai Østgaard ◽  
Andrey Mezentsev ◽  
Torstein Neubert ◽  
...  

<p>Terrestrial Gamma-ray Flashes (TGFs) are sub milliseconds bursts of high energy photons associated with lightning flashes in thunderstorms. The Atmosphere-Space Interactions Monitor (ASIM), launched in April 2018, is the first space mission specifically designed to detect TGFs. We will mainly focus on data from the High Energy Detector (HED) which is sensitive to photons with energies from 300 keV to > 30 MeV, and include data from the Low Energy Detector (LED) sensitive in 50 keV to 370 keV energy range. Both HED and LED are part of the Modular X- and Gamma-ray Sensor (MXGS) of ASIM.<br><br>The energy spectrum of TGFs, together with Monte Carlo simulations, can provide information on the production altitude and beaming geometry of TGFs. Constraints have already been set on the production altitude and beaming geometry using other spacecraft and radio measurements. Some of these studies are based on cumulative spectra of a large number of TGFs (e.g. [1]), which smooth out individual variability. The spectral analysis of individual TGFs has been carried out up to now for Fermi TGFs only, showing spectral diversity [2]. Crucial key factors for individual TGF spectral analysis are a large number of counts, an energy range extended to several tens of MeV, a good energy calibration as well as knowledge and control of any instrumental effects affecting the measurements.</p><p>We strive to put stricter constraints on the production altitude and beaming geometry, by comparing Monte Carlo simulations to energy spectra from single ASIM TGFs. We will present the dataset and method, including the correction for instrumental effects, and preliminary results on individual TGFs.</p><p>Thanks to ASIM’s large effective area and low orbital altitude, single TGFs detected by ASIM have much more count statistics than observations from other spacecrafts capable of detecting TGFs. ASIM has detected over 550 TGFs up to date (January 2020), and ~115 have more than 100 counts. This allows for a large sample for individual spectral analysis.</p><p>References:</p><ol><li>Dwyer, J. R., and D. M. Smith (2005), A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations, Geophys. Res. Lett., 32, L22804, doi:10.1029/2005GL023848.</li> <li>Mailyan et al. (2016), The spectroscopy of individual terrestrial gamma-ray flashes: Constraining the source properties, J. Geophys. Res. Space Physics, 121, 11,346–11,363, doi:10.1002/2016JA022702.</li> </ol>


1999 ◽  
Vol 138 (3) ◽  
pp. 403-404 ◽  
Author(s):  
L. Amati ◽  
F. Frontera ◽  
E. Costa ◽  
M. Feroci ◽  
M. N. Cinti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document