Time-lapse Full Waveform Inversion for Monitoring Near-surface Microbubble Injection

Author(s):  
R. Kamei ◽  
U.G. Jang ◽  
D. Lumley ◽  
T. Mouri ◽  
M. Nakatsukasa ◽  
...  
Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R45-R60
Author(s):  
Mrinal Sinha ◽  
Gerard T. Schuster

Velocity errors in the shallow part of the velocity model can lead to erroneous estimates of the full-waveform inversion (FWI) tomogram. If the location and topography of a reflector are known, then such a reflector can be used as a reference reflector to update the underlying velocity model. Reflections corresponding to this reference reflector are windowed in the data space. Windowed reference reflections are then crosscorrelated with reflections from deeper interfaces, which leads to partial cancellation of static errors caused by the overburden above the reference interface. Interferometric FWI (IFWI) is then used to invert the tomogram in the target region, by minimizing the normalized waveform misfit between the observed and predicted crosscorrelograms. Results with synthetic and field data with static errors above the reference interface indicate that an accurate tomogram can be inverted in areas lying within several wavelengths of the reference interface. IFWI can also be applied to synthetic time-lapse data to mitigate the nonrepeatability errors caused by time-varying overburden variations. The synthetic- and field-data examples demonstrate that IFWI can provide accurate tomograms when the near surface is ridden with velocity errors.


2021 ◽  
Vol 110 ◽  
pp. 103417
Author(s):  
Dong Li ◽  
Suping Peng ◽  
Xingguo Huang ◽  
Yinling Guo ◽  
Yongxu Lu ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-37
Author(s):  
Xinhai Hu ◽  
Wei Guoqi ◽  
Jianyong Song ◽  
Zhifang Yang ◽  
Minghui Lu ◽  
...  

Coupling factors of sources and receivers vary dramatically due to the strong heterogeneity of near surface, which are as important as the model parameters for the inversion success. We propose a full waveform inversion (FWI) scheme that corrects for variable coupling factors while updating the model parameter. A linear inversion is embedded into the scheme to estimate the source and receiver factors and compute the amplitude weights according to the acquisition geometry. After the weights are introduced in the objective function, the inversion falls into the category of separable nonlinear least-squares problems. Hence, we could use the variable projection technique widely used in source estimation problem to invert the model parameter without the knowledge of source and receiver factors. The efficacy of the inversion scheme is demonstrated with two synthetic examples and one real data test.


2017 ◽  
Author(s):  
Musa Maharramov ◽  
Ganglin Chen ◽  
Partha S. Routh ◽  
Anatoly I. Baumstein ◽  
Sunwoong Lee ◽  
...  

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B95-B105 ◽  
Author(s):  
Yao Wang ◽  
Richard D. Miller ◽  
Shelby L. Peterie ◽  
Steven D. Sloan ◽  
Mark L. Moran ◽  
...  

We have applied time domain 2D full-waveform inversion (FWI) to detect a known 10 m deep wood-framed tunnel at Yuma Proving Ground, Arizona. The acquired seismic data consist of a series of 2D survey lines that are perpendicular to the long axis of the tunnel. With the use of an initial model estimated from surface wave methods, a void-detection-oriented FWI workflow was applied. A straightforward [Formula: see text] quotient masking method was used to reduce the inversion artifacts and improve confidence in identifying anomalies that possess a high [Formula: see text] ratio. Using near-surface FWI, [Formula: see text] and [Formula: see text] velocity profiles were obtained with void anomalies that are easily interpreted. The inverted velocity profiles depict the tunnel as a low-velocity anomaly at the correct location and depth. A comparison of the observed and simulated waveforms demonstrates the reliability of inverted models. Because the known tunnel has a uniform shape and for our purposes an infinite length, we apply 1D interpolation to the inverted [Formula: see text] profiles to generate a pseudo 3D (2.5D) volume. Based on this research, we conclude the following: (1) FWI is effective in near-surface tunnel detection when high resolution is necessary. (2) Surface-wave methods can provide accurate initial S-wave velocity [Formula: see text] models for near-surface 2D FWI.


2017 ◽  
Author(s):  
Yao Wang ◽  
Richard Miller ◽  
Shelby Peterie ◽  
Steven Sloan ◽  
Mark Moran ◽  
...  

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Fuchun Gao ◽  
Jeroen Tromp

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.


Sign in / Sign up

Export Citation Format

Share Document