Relation Between Facies and Fracturing In Chalk Outcrops - The Importance of Early Polygonal Fracture Systems in Understa

Author(s):  
B.D.M. Gauthier ◽  
C. Allanic ◽  
E. Lasseur ◽  
O. Faÿ-Gomord ◽  
Y.M. Leroy
2019 ◽  
Vol 98 ◽  
pp. 07013
Author(s):  
Thomas Kretzschmar ◽  
Matteo Lelli ◽  
Ruth Alfaro ◽  
Juan Ignacio Sanchez ◽  
Yann Rene Ramos

It is important to develop a regional hydrogeological model to identify possible recharge and discharge areas for a sustainable use of a geothermal reservoir. The Los Humeros geothermal area is situated within five surficial watersheds and coveres an area of more than 15.000 km2. A total of 208 well and spring samples were collected between June 2017 and November 2018. The stable isotope data for this region define a regression line of δDH2O = 8.032·δ18O + 12 and indicate that groundwater is recharged by regional precipitation. At least 39 groundwater wells, with a maximum temperature of 35 °C, show temperatures above the reported mean average surface temperature of 15 °C. Characteristic elements for geothermal reservoir fluids (B, Li, As) are also present in these groundwaters, indicating a possible connection between the reservoir fluid and the local groundwater through local fracture systems. Concentration of B in these hot wells is between 150 and 35000 ppb.


2011 ◽  
Vol 30 (5) ◽  
pp. 496-501 ◽  
Author(s):  
Hao Guo ◽  
Kurt J. Marfurt ◽  
Jiang Shu

Author(s):  
Hannes Hofmann ◽  
Tayfun Babadagli ◽  
Günter Zimmermann

The creation of large complex fracture networks by hydraulic fracturing is imperative for enhanced oil recovery from tight sand or shale reservoirs, tight gas extraction, and Hot-Dry-Rock (HDR) geothermal systems to improve the contact area to the rock matrix. Although conventional fracturing treatments may result in bi-wing fractures, there is evidence by microseismic mapping that fracture networks can develop in many unconventional reservoirs, especially when natural fracture systems are present and the differences between the principle stresses are low. However, not much insight is gained about fracture development as well as fluid and proppant transport in naturally fractured tight formations. In order to clarify the relationship between rock and treatment parameters, and resulting fracture properties, numerical simulations were performed using a commercial Discrete Fracture Network (DFN) simulator. A comprehensive sensitivity analysis is presented to identify typical fracture network patterns resulting from massive water fracturing treatments in different geological conditions. It is shown how the treatment parameters influence the fracture development and what type of fracture patterns may result from different treatment designs. The focus of this study is on complex fracture network development in different natural fracture systems. Additionally, the applicability of the DFN simulator for modeling shale gas stimulation and HDR stimulation is critically discussed. The approach stated above gives an insight into the relationships between rock properties (specifically matrix properties and characteristics of natural fracture systems) and the properties of developed fracture networks. Various simulated scenarios show typical conditions under which different complex fracture patterns can develop and prescribe efficient treatment designs to generate these fracture systems. Hydraulic stimulation is essential for the production of oil, gas, or heat from ultratight formations like shales and basement rocks (mainly granite). If natural fracture systems are present, the fracturing process becomes more complex to simulate. Our simulation results reveal valuable information about main parameters influencing fracture network properties, major factors leading to complex fracture network development, and differences between HDR and shale gas/oil shale stimulations.


2015 ◽  
Vol 420 (1) ◽  
pp. 297-314 ◽  
Author(s):  
Á. R. Hjartardóttir ◽  
P. Einarsson ◽  
S. Magnúsdóttir ◽  
Þ. Björnsdóttir ◽  
B. Brandsdóttir

Britannia ◽  
2013 ◽  
Vol 44 ◽  
pp. 219-246 ◽  
Author(s):  
A. Tasker ◽  
I.P. Wilkinson ◽  
M. Williams ◽  
M. Morris ◽  
N.J. Cooper ◽  
...  

AbstractFourth-centurya.d.chalk tesserae from Roman Leicester (Ratae Corieltavorum) yield rich microfossil assemblages that identify a biostratigraphical age of Cretaceous Late Cenomanian to Early Turonian. The nearest chalk outcrops to Leicester lie in Hertfordshire, Lincolnshire, Yorkshire and north Norfolk, indicating that the material for the tesserae must have been sourced remotely and transported toRatae.Superimposing the Roman road network onto a map of the relevant Chalk Group distribution provides a guide to possible sources. A process of evaluation identifies Baldock in Hertfordshire and Bridlington in Yorkshire as the most likely sources for the Leicester tesserae.


GeoArabia ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 99-136
Author(s):  
Simon Virgo ◽  
Max Arndt ◽  
Zoé Sobisch ◽  
Janos L. Urai

ABSTRACT We present a high-resolution structural study on the dip slope of the southern flank of Jabal Shams in the central Oman Mountains. The objectives of the study were: (1) to test existing satellite-based interpretations of structural elements in the area; (2) prepare an accurate geological map; and (3) collect an extensive structural dataset of fault and bedding planes, fault throws, veins and joints. These data are compared with existing models of tectonic evolution in the Oman Mountains and the subsurface, and used to assess the applicability of these structures as analogs for fault and fracture systems in subsurface carbonate reservoirs in Oman. The complete exposure of clean rock incised by deep wadis allowed detailed mapping of the complex fault, vein and joint system hosted by Member 3 of the Cretaceous Kahmah Group. The member was divided into eight units for mapping purposes, in about 100 m of vertical stratigraphy. The map was almost exclusively based on direct field observations. It includes measurement of fault throw in many locations and the construction of profiles, which are accurate to within a few meters. Ground-truthing of existing satellite-based interpretations of structural elements showed that faults can be mapped with high confidence using remote-sensing data. The faults range into the subseismic scale with throws as little as a few decimeters. However, the existing interpretation of lineaments as cemented fractures was shown to be incorrect: the majority of these are open fractures formed along reactivated veins. The most prominent structure in the study area is a conjugate set of ESE-striking faults with throws resolvable from several centimeters to hundreds of meters. These faults contain bundles of coarse-grained calcite veins, which may be brecciated during reactivation. We interpret these faults to be a conjugate normal- to oblique fault set, which was rotated together with bedding during the folding of the Al Jabal al-Akhdar anticline. There are many generations of calcite veins with minor offset and at high-angle-to-bedding, sometimes in en-echelon sets. Analysis of clear overprinting relationships between veins at high-angle-to-bedding is consistent with the interpretations of Holland et al. (2009a); however we interpret the anticlockwise rotation of vein strike orientation to start before and end after the normal faulting. The normal faults post-date the bedding-parallel shear veins in the study area. Thus these faults formed after the emplacement of the Semail and Hawasina Nappes. They were previously interpreted to be of the same age as the regional normal- to oblique-slip faults in the subsurface of northern Oman and the United Arab Emirates, which evolved during the early deposition of the Campanian Fiqa Formation as proposed by Filbrandt et al. (2006). We interpret them also to be coeval with the Phase I extension of Fournier et al. (2006). The reactivation of these faults and the evolution of new veins was followed by folding of the Al Jabal al-Akhdar anticline and final uplift and jointing by reactivation of pre-existing microveins. Thus the faults in the study area are of comparable kinematics and age as those in the subsurface. However they formed at much greater depth and fluid pressures, so that direct use of these structures as analogs for fault and fracture systems in subsurface reservoirs in Oman should be undertaken with care.


Sign in / Sign up

Export Citation Format

Share Document