Fracture systems and fault-block tectonics

Keyword(s):  
2016 ◽  
Vol 53 (2) ◽  
pp. 93-114
Author(s):  
Jesús Pinto ◽  
John Warme

We interpret a discrete, anomalous ~10-m-thick interval of the shallow-marine Middle to Late Devonian Valentine Member of the Sultan Formation at Frenchman Mountain, southern Nevada, to be a seismite, and that it was generated by the Alamo Impact Event. A suite of deformation structures characterize this unique interval of peritidal carbonate facies at the top of the Valentine Member; no other similar intervals have been discovered in the carbonate beds on Frenchman Mountain or in equivalent Devonian beds exposed in ranges of southern Nevada. The disrupted band extends for 5 km along the Mountain, and onto the adjoining Sunrise Mountain fault block for an additional 4+km. The interval displays a range of brittle, ductile and fluidized structures, and is divided into four informal bed-parallel units based on discrete deformation style and internal features that carry laterally across the study area. Their development is interpreted as the result of intrastratal compressional and contractional forces imposed upon the unconsolidated to fully cemented near-surface carbonate sediments at the top of the Valentine Member. The result is an assemblage of fractured, faulted, and brecciated beds, some of which were dilated, fluidized and injected to form new and complex matrix bands between beds. We interpret that the interval is an unusually thick and well displayed seismite. Because the Sultan Formation correlates northward to the Frasnian (lower Upper Devonian) carbonate rocks of the Guilmette Formation, and the Guilmette contains much thicker and more proximal exposures of the Alamo Impact Breccia, including seismites, we interpret the Frenchman Mountain seismite to be a far-field product of the Alamo Impact Event. Accompanying ground motion and deformation of the inner reaches of the Devonian carbonate platform may have resulted in a fall of relative sea level and abrupt shift to a salt-pan paleoenvironment exhibited by the post-event basal beds of the directly overlying Crystal Pass Member.


2021 ◽  
pp. 104831
Author(s):  
Hilary Corlett ◽  
David Hodgetts ◽  
Jesal Hirani ◽  
Atle Rotevatn ◽  
Rochelle Taylor ◽  
...  
Keyword(s):  

2019 ◽  
Vol 98 ◽  
pp. 07013
Author(s):  
Thomas Kretzschmar ◽  
Matteo Lelli ◽  
Ruth Alfaro ◽  
Juan Ignacio Sanchez ◽  
Yann Rene Ramos

It is important to develop a regional hydrogeological model to identify possible recharge and discharge areas for a sustainable use of a geothermal reservoir. The Los Humeros geothermal area is situated within five surficial watersheds and coveres an area of more than 15.000 km2. A total of 208 well and spring samples were collected between June 2017 and November 2018. The stable isotope data for this region define a regression line of δDH2O = 8.032·δ18O + 12 and indicate that groundwater is recharged by regional precipitation. At least 39 groundwater wells, with a maximum temperature of 35 °C, show temperatures above the reported mean average surface temperature of 15 °C. Characteristic elements for geothermal reservoir fluids (B, Li, As) are also present in these groundwaters, indicating a possible connection between the reservoir fluid and the local groundwater through local fracture systems. Concentration of B in these hot wells is between 150 and 35000 ppb.


2017 ◽  
Vol 114 (37) ◽  
pp. 9820-9825 ◽  
Author(s):  
George A. Thompson ◽  
Tom Parsons

In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.


2011 ◽  
Vol 30 (5) ◽  
pp. 496-501 ◽  
Author(s):  
Hao Guo ◽  
Kurt J. Marfurt ◽  
Jiang Shu

Author(s):  
Hannes Hofmann ◽  
Tayfun Babadagli ◽  
Günter Zimmermann

The creation of large complex fracture networks by hydraulic fracturing is imperative for enhanced oil recovery from tight sand or shale reservoirs, tight gas extraction, and Hot-Dry-Rock (HDR) geothermal systems to improve the contact area to the rock matrix. Although conventional fracturing treatments may result in bi-wing fractures, there is evidence by microseismic mapping that fracture networks can develop in many unconventional reservoirs, especially when natural fracture systems are present and the differences between the principle stresses are low. However, not much insight is gained about fracture development as well as fluid and proppant transport in naturally fractured tight formations. In order to clarify the relationship between rock and treatment parameters, and resulting fracture properties, numerical simulations were performed using a commercial Discrete Fracture Network (DFN) simulator. A comprehensive sensitivity analysis is presented to identify typical fracture network patterns resulting from massive water fracturing treatments in different geological conditions. It is shown how the treatment parameters influence the fracture development and what type of fracture patterns may result from different treatment designs. The focus of this study is on complex fracture network development in different natural fracture systems. Additionally, the applicability of the DFN simulator for modeling shale gas stimulation and HDR stimulation is critically discussed. The approach stated above gives an insight into the relationships between rock properties (specifically matrix properties and characteristics of natural fracture systems) and the properties of developed fracture networks. Various simulated scenarios show typical conditions under which different complex fracture patterns can develop and prescribe efficient treatment designs to generate these fracture systems. Hydraulic stimulation is essential for the production of oil, gas, or heat from ultratight formations like shales and basement rocks (mainly granite). If natural fracture systems are present, the fracturing process becomes more complex to simulate. Our simulation results reveal valuable information about main parameters influencing fracture network properties, major factors leading to complex fracture network development, and differences between HDR and shale gas/oil shale stimulations.


2015 ◽  
Vol 420 (1) ◽  
pp. 297-314 ◽  
Author(s):  
Á. R. Hjartardóttir ◽  
P. Einarsson ◽  
S. Magnúsdóttir ◽  
Þ. Björnsdóttir ◽  
B. Brandsdóttir

Sign in / Sign up

Export Citation Format

Share Document