Rheology and Morphology Analysis of an Enhanced Preformed Particle Gel using Silicate Sodium and Graphene Nanoplatelets

Author(s):  
A. Paprouschi ◽  
S.M. Fatemi ◽  
M.H. Ghazanfari
Author(s):  
Ranu Kumar ◽  
Prasad Kapildeo

We are traditionally used Microscope in clinical laboratory for determination of white blood cells of human blood smear. Now, in this study we were used Foldscope with Smartphone in the place of Microscope and examine many samples of human blood smear which was collected from local diagnostic centers. We were very easily quantity & morphology analysis of all types of WBC cells such as Neutrophils, Lymphocytes, Monocytes, Eosionophils, Basophils in blood smear with the help of Foldscope & image taken by Smartphone. The main objective of this study is to use Foldscope for quantity & morphology analysis of human WBCs at field level especially poor resource area where healthcare services or centers is not available & where carry of microscope is not possible.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Roman Jansen ◽  
Kira Küsters ◽  
Holger Morschett ◽  
Wolfgang Wiechert ◽  
Marco Oldiges

Abstract Background Morphology, being one of the key factors influencing productivity of filamentous fungi, is of great interest during bioprocess development. With increasing demand of high-throughput phenotyping technologies for fungi due to the emergence of novel time-efficient genetic engineering technologies, workflows for automated liquid handling combined with high-throughput morphology analysis have to be developed. Results In this study, a protocol allowing for 48 parallel microbioreactor cultivations of Aspergillus carbonarius with non-invasive online signals of backscatter and dissolved oxygen was established. To handle the increased cultivation throughput, the utilized microbioreactor is integrated into a liquid handling platform. During cultivation of filamentous fungi, cell suspensions result in either viscous broths or form pellets with varying size throughout the process. Therefore, tailor-made liquid handling parameters such as aspiration/dispense height, velocity and mixing steps were optimized and validated. Development and utilization of a novel injection station enabled a workflow, where biomass samples are automatically transferred into a flow through chamber fixed under a light microscope. In combination with an automated image analysis concept, this enabled an automated morphology analysis pipeline. The workflow was tested in a first application study, where the projected biomass area was determined at two different cultivation temperatures and compared to the microbioreactor online signals. Conclusions A novel and robust workflow starting from microbioreactor cultivation, automated sample harvest and processing via liquid handling robots up to automated morphology analysis was developed. This protocol enables the determination of projected biomass areas for filamentous fungi in an automated and high-throughput manner. This measurement of morphology can be applied to describe overall pellet size distribution and heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document