A modelling approach for predicting scale formation triggered by hydraulic fracture stimulation in tight carbonate reservoirs

Author(s):  
Y. Fu ◽  
M. Dahlan
2021 ◽  
Author(s):  
Kangxu Ren ◽  
Junfeng Zhao ◽  
Jian Zhao ◽  
Xilong Sun

Abstract At least three very different oil-water contacts (OWC) encountered in the deepwater, huge anticline, pre-salt carbonate reservoirs of X oilfield, Santos Basin, Brazil. The boundaries identification between different OWC units was very important to help calculating the reserves in place, which was the core factor for the development campaign. Based on analysis of wells pressure interference testing data, and interpretation of tight intervals in boreholes, predicating the pre-salt distribution of igneous rocks, intrusion baked aureoles, the silicification and the high GR carbonate rocks, the viewpoint of boundaries developed between different OWC sub-units in the lower parts of this complex carbonate reservoirs had been better understood. Core samples, logging curves, including conventional logging and other special types such as NMR, UBI and ECS, as well as the multi-parameters inversion seismic data, were adopted to confirm the tight intervals in boreholes and to predicate the possible divided boundaries between wells. In the X oilfield, hundreds of meters pre-salt carbonate reservoir had been confirmed to be laterally connected, i.e., the connected intervals including almost the whole Barra Velha Formation and/or the main parts of the Itapema Formation. However, in the middle and/or the lower sections of pre-salt target layers, the situation changed because there developed many complicated tight bodies, which were formed by intrusive diabase dykes and/or sills and the tight carbonate rocks. Many pre-salt inner-layers diabases in X oilfield had very low porosity and permeability. The tight carbonate rocks mostly developed either during early sedimentary process or by latter intrusion metamorphism and/or silicification. Tight bodies were firstly identified in drilled wells with the help of core samples and logging curves. Then, the continuous boundary were discerned on inversion seismic sections marked by wells. This paper showed the idea of coupling the different OWC units in a deepwater pre-salt carbonate play with complicated tight bodies. With the marking of wells, spatial distributions of tight layers were successfully discerned and predicated on inversion seismic sections.


2015 ◽  
Author(s):  
Manhal Sirat ◽  
Mujahed Ahmed ◽  
Xing Zhang

Abstract In-situ stress state plays an important role in controlling fracture growth and containment in hydraulic fracturing managements. It is evident that the mechanical properties, existing stress regime and the natural fracture network of its reservoir rocks and the surrounding formations mainly control the geometry, size and containments of produced hydraulic fractures. Furthermore, the three principal in situ stresses' axes swap directions and magnitudes at different depths giving rise to identifying different mechanical bedrocks with corresponding stress regimes at different depths. Hence predicting the hydro-fractures can be theoretically achieved once all the above data are available. This is particularly difficult in unconventional and tight carbonate reservoirs, where heterogeneity and highly stress variation, in terms of magnitude and orientation, are expected. To optimize the field development plan (FDP) of a tight carbonate gas reservoir in Abu Dhabi, 1D Mechanical Earth Models (MEMs), involving generating the three principal in-situ stresses' profiles and mechanical property characterization with depth, have been constructed for four vertical wells. The results reveal the swap of stress magnitudes at different mechanical layers, which controls the dimension and orientation of the produced hydro-fractures. Predicted containment of the Hydro-fractures within the specific zones is likely with inevitable high uncertainty when the stress contrast between Sv, SHmax with Shmin respectively as well as Young's modulus and Poisson's Ratio variations cannot be estimated accurately. The uncertainty associated with this analysis is mainly related to the lacking of the calibration of the stress profiles of the 1D MEMs with minifrac and/or XLOT data, and both mechanical and elastic properties with rock mechanic testing results. This study investigates the uncertainty in predicting hydraulic fracture containment due to lacking such calibration, which highlights that a complete suite of data, including calibration of 1D MEMs, is crucial in hydraulic fracture treatment.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Chunyan Qi ◽  
Yun Liu ◽  
Fengjuan Dong ◽  
Xixiang Liu ◽  
Xing Yang ◽  
...  

The carbonate reservoirs in the middle Sichuan area have undergone complicated tectonics, resulting in various types of reservoir space, large secondary changes, and multiple complexities. Taking the tight carbonate gas reservoir of the Deng-4 member in this area as an example, based on casting thin sections, scanning electron microscopy, and high-pressure mercury injection experiments, the reservoir space and microstructural characteristics of the micropore throats were studied, and the influence of the microscale heterogeneity in different types of reservoirs on the seepage capacity was analyzed by applying fractal theory. The results showed that the reservoir space in the tight carbonate rock of the Deng-4 member in the study area could be divided into 3 types: pore-hole-fracture, pore-hole, and pore types. The distribution characteristics of the pore throat diameter were multimode wide type, double-mode high and low asymmetrical type, and single-mode concentrated type. The fractal dimension and seepage capability of the pore throat increased successively in sizes from less than 0.1 μm to 0.1~1.0 μm and greater than 1.0 μm. On the one hand, the development of karst caves and fractures controlled the percolation ability of tight carbonate reservoirs; on the other hand, it enhanced the heterogeneity of the micropore throat structure. However, the development degree of dissolved pores and microfractures has a weak contribution to the connectivity and seepage capacity of the reservoir space. Acidification, fracturing, and other measures can be adopted to enhance the connectivity between pores to improve the productivity of the gas reservoir. This study provides a scientific basis for the efficient exploration and development of tight carbonate reservoirs.


Sign in / Sign up

Export Citation Format

Share Document