Features of the Earth Degassing and Gas Hydrates Distribution in the Black Sea

Author(s):  
V.I. Bogoyavlensky ◽  
A.S. Yanchevskaya
2020 ◽  
Vol 11 (1) ◽  
pp. 31-51
Author(s):  
Dmitry A. Shcheglov

Abstract. This article aims to explain how Ptolemy could have constructed a map of the Pontus Euxinus (Black Sea), as described in his Geography, under the assumption that his sources were similar to those that have come down to us. The method employed is based on the comparison of Ptolemy's data with corresponding information from other ancient sources, revealing the most conspicuous similarities and differences between them. Three types of information are considered as possible “constituent elements” of Ptolemy's map: latitudes, coastline lengths, and straight-line distances. It is argued that the latitudes Ptolemy used for the key points determining the overall shape of the Pontus (Byzantium, Trapezus, the mouth of the Borysthenes and the Cimmerian Bosporus, the mouth of the Tanais, etc.) were most likely inherited from earlier geographers (Eratosthenes, Hipparchus, and Marinus). In exactly the same way, Ptolemy's data on the circumference of the Pontus and the length of the coastal stretches between the key points (from the Thracian Bosporus to Cape Karambis, Sinope, Trapezus, and the mouth of the Phasis, etc.) closely correlate with the corresponding estimates reported by other geographers (Eratosthenes, Artemidorus, Strabo, Pliny, Arrian, and Pseudo-Arrian), which implies that Ptolemy drew on similar coastline length information. The shortening of Ptolemy's west coast of the Pontus (from the Thracian Bosporus to the mouth of the Borysthenes) relative to the corresponding distances reported by other sources is explained by his underestimation of the circumference of the Earth. The lengthening of Ptolemy's north-east Pontus coast (from the Cimmerian Bosporus to the mouth of the Phasis) can, in part, be accounted for by his attempt to incorporate the straight-line distances across the open sea reported by Pliny. Overall, Ptolemy's configuration of the Black Sea can be satisfactorily explained as a result of fitting contradictory pieces of information together that were inherited from earlier geographical traditions.


2003 ◽  
Vol 23 (3-4) ◽  
pp. 239-249 ◽  
Author(s):  
G. Bohrmann ◽  
M. Ivanov ◽  
J.-P. Foucher ◽  
V. Spiess ◽  
J. Bialas ◽  
...  

1999 ◽  
Vol 42 (4) ◽  
Author(s):  
G. Spada ◽  
L. Alfonsi ◽  
E. Boschi

It is now widely accepted that during the late Quaternary glaciation the Black Sea formed an isolated inland lake (Ross et al., 1970). New geological data and the recognition of sudden population movements away from the Black Sea coasts suggest that the basin was rapidly flooded through the Bosphorus sill 7150 years bp, causing a sea level rise of ~ 135 m in a few years (Ryan et al., 1997). As shown here, such a catastrophic redistribution of mass has significantly altered the amplitude of the Chandler wobble, the free motion of the pole of rotation around the main inertia axis of the Earth (Lambeck, 1980). We also estimate that during the flooding the pole of rotation was diverted from its secular path and shifted by ~ 30 m, at a rate of several meters per year. These rotational variations are found to be orders of magnitude larger than those produced by other short-term geophysical processes, such as earthquakes seismic moment release (O'Connell and Dziewonski, 1979; Chao et al.,1996), anthropogenic water impoundment (Chao, 1995), and tectonic mass movements (Alfonsi and Spada, 1998). The Black Sea flooding may thus be responsible for the most drastic change in the rotational parameters of the Earth in the recent history of our planet.


2020 ◽  
Vol 81 (3) ◽  
pp. 184-186
Author(s):  
Atanas Vasilev ◽  
Nikola Botoucharov ◽  
Petar Petsinski ◽  
Rositsa Pehlivanova

The aim of this work is to reconstruct the variations of the total gas hydrate (GH) masses of the Danube deep-sea fan after 0.265 Ma BP. The PetroMod™ model developed in GEOMAR, Germany is for basin analysis of the Western Black Sea for 98 Ma. Geological structure is from 2D seismic of the Black Sea consortium “Geology without limits”. Results show a trend for total GH masses decrease after Middle Pleistocene and the role of the GHs as sink and source of methane.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022010
Author(s):  
N B Zakharova ◽  
T O Sheloput ◽  
N R Lezina ◽  
V P Shutyaev ◽  
E I Parmuzin ◽  
...  

Abstract This work is aimed at using the marine data of the Shared Use Centre (SUC) “IKI-Monitoring” in the variational assimilation procedures of the Informational Computational System (ICS) “INM RAS - Black Sea”. SUC “IKI - Monitoring” is a tool for obtaining remote sensing observations on the Earth state. In the paper observation data information is given, data processing procedures are described, algorithms for the assimilation of the information received and several specific features of the numerical model used are presented. Results of the variational assimilation of two sets of observation data are presented and discussed. Numerical experiments have confirmed the possibility of using incomplete data from satellites in the problems of modelling the sea area.


2021 ◽  
Vol 230 ◽  
pp. 01005
Author(s):  
Yevgeny Shnyukov ◽  
Volodymyr Kobolev ◽  
Valentina Yanko

This paper discusses the formation of a special mud-volcanic type of gas hydrate accumulation in the deep-water part of the Black Sea. The main conclusions are based on the results of geological and geophysical studies of mud volcanoes carried out in the course of numerous scientific cruises between 1970-2015. Comparison of the Black Sea submarine mud volcanoes with their on-land analogues indicates the possible use of compensatory depressions, called “recessed synclines”, accompanying mud volcanoes, which is revealed in the course of prospecting and exploration of mineral deposits. In the sea they are represented by ring deposits of methane gas hydrates.


Sign in / Sign up

Export Citation Format

Share Document