Generative Adversarial Networks (GAN) to improve spatial resolution in inverted velocity fields

Author(s):  
A. Flórez ◽  
S. Abreo ◽  
O. Reyes
Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7471
Author(s):  
Shuozhi Wang ◽  
Jianqiang Mei ◽  
Lichao Yang ◽  
Yifan Zhao

The measurement accuracy and reliability of thermography is largely limited by a relatively low spatial-resolution of infrared (IR) cameras in comparison to digital cameras. Using a high-end IR camera to achieve high spatial-resolution can be costly or sometimes infeasible due to the high sample rate required. Therefore, there is a strong demand to improve the quality of IR images, particularly on edges, without upgrading the hardware in the context of surveillance and industrial inspection systems. This paper proposes a novel Conditional Generative Adversarial Networks (CGAN)-based framework to enhance IR edges by learning high-frequency features from corresponding visual images. A dual-discriminator, focusing on edge and content/background, is introduced to guide the cross imaging modality learning procedure of the U-Net generator in high and low frequencies respectively. Results demonstrate that the proposed framework can effectively enhance barely visible edges in IR images without introducing artefacts, meanwhile the content information is well preserved. Different from most similar studies, this method only requires IR images for testing, which will increase the applicability of some scenarios where only one imaging modality is available, such as active thermography.


2021 ◽  
Vol 13 (20) ◽  
pp. 4044
Author(s):  
Étienne Clabaut ◽  
Myriam Lemelin ◽  
Mickaël Germain ◽  
Yacine Bouroubi ◽  
Tony St-Pierre

Training a deep learning model requires highly variable data to permit reasonable generalization. If the variability in the data about to be processed is low, the interest in obtaining this generalization seems limited. Yet, it could prove interesting to specialize the model with respect to a particular theme. The use of enhanced super-resolution generative adversarial networks (ERSGAN), a specific type of deep learning architecture, allows the spatial resolution of remote sensing images to be increased by “hallucinating” non-existent details. In this study, we show that ESRGAN create better quality images when trained on thematically classified images than when trained on a wide variety of examples. All things being equal, we further show that the algorithm performs better on some themes than it does on others. Texture analysis shows that these performances are correlated with the inverse difference moment and entropy of the images.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Sign in / Sign up

Export Citation Format

Share Document