UAV-based 3D outcrop modeling: stratigraphic mapping of a seismic scale Jurassic oolitic ramp, Amellago cliff, Morocco

Author(s):  
A. Bordenave ◽  
E. Dujoncquoy ◽  
R. Bourillot ◽  
J. Kenter ◽  
J. Champagne ◽  
...  
Keyword(s):  
2021 ◽  
Vol 9 (2) ◽  
pp. T585-T598
Author(s):  
Abidin B. Caf ◽  
John D. Pigott

Extensive dolomitization is prevalent in the platform and periplatform carbonates in the Lower-Middle Permian strata in the Midland and greater Permian Basin. Early workers have found that the platform and shelf-top carbonates were dolomitized, whereas slope and basinal carbonates remained calcitic, proposing a reflux dolomitization model as the possible diagenetic mechanism. More importantly, they underline that this dolomitization pattern controls the porosity and forms an updip seal. These studies are predominately conducted using well logs, cores, and outcrop analogs, and although exhibiting high resolution vertically, such determinations are laterally sparse. We have used supervised Bayesian classification and probabilistic neural networks (PNN) on a 3D seismic volume to create an estimation of the most probable distribution of dolomite and limestone within a subsurface 3D volume petrophysically constrained. Combining this lithologic information with porosity, we then illuminate the diagenetic effects on a seismic scale. We started our workflow by deriving lithology classifications from well-log crossplots of neutron porosity and acoustic impedance to determine the a priori proportions of the lithology and the probability density functions calculation for each lithology type. Then, we applied these probability distributions and a priori proportions to 3D seismic volumes of the acoustic impedance and predicted neutron porosity volume to create a lithology volume and probability volumes for each lithology type. The acoustic impedance volume was obtained by model-based poststack inversion, and the neutron porosity volume was obtained by the PNN. Our results best supported a regional reflux dolomitization model, in which the porosity is increasing from shelf to slope while the dolomitization is decreasing, but with sea-level forcing. With this study, we determined that diagenesis and the corresponding reservoir quality in these platforms and periplatform strata can be directly imaged and mapped on a seismic scale by quantitative seismic interpretation and supervised classification methods.


2018 ◽  
Vol 6 (4) ◽  
pp. T1067-T1080 ◽  
Author(s):  
Ursula Iturrarán-Viveros ◽  
Andrés M. Muñoz-García ◽  
Jorge O. Parra ◽  
Josué Tago

We have applied instantaneous seismic attributes to a stacked P-wave reflected seismic section in the Tenerife field located in the Middle Magdalena Valley Basin in Colombia to estimate the volume of clay [Formula: see text] and the density [Formula: see text] at seismic scale. The well logs and the seismic attributes associated to the seismic trace closer to one of the available wells (Tenerife-2) is the information used to train some multilayered artificial neural networks (ANN). We perform data analysis via the gamma test, a mathematically nonparametric nonlinear smooth modeling tool, to choose the best input combination of seismic attributes to train ANNs to estimate [Formula: see text] and [Formula: see text]. Once the ANNs are trained, they are applied to predict these parameters along the seismic line. From the continuous estimations of [Formula: see text], we distinguish two facies: sands for [Formula: see text] and shales when [Formula: see text]. These estimations confirm the production of the Mugrosa C-Sands zone, and we draw the brown shale that correlates with the high-amplitude attributes and the yellow sand that correlates with the low-amplitude attributes. Using the well-log information for [Formula: see text] and the facies classification (also in the well log), two cubic polynomials that depend on time (or depth) are obtained, one for sands and the other for shales, to fit the [Formula: see text]. These two cubic polynomials and the facies classification obtained from the [Formula: see text] at the seismic scale enable us to estimate [Formula: see text] at the seismic scale. To validate the 2D [Formula: see text] and [Formula: see text] predicted data, a forward-modeling software (the Kennett reflectivity algorithm) is used. This model calculates synthetic seismograms that are compared with the real seismograms. This comparison indicates a small misfit that suggests that the [Formula: see text] and [Formula: see text] images are representing the reservoir description characteristics and the ANN method is accurate to map these parameters.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1252
Author(s):  
Jan Barmuta ◽  
Krzysztof Starzec ◽  
Wojciech Schnabel

Based on the interpretation of 2D seismic profiles integrated with surface geological investigations, a mechanism responsible for the formation of a large scale normal fault zone has been proposed. The fault, here referred to as the Rycerka Fault, has a predominantly normal dip-slip component with the detachment surface located at the base of Carpathian units. The fault developed due to the formation of an anticlinal stack within the Dukla Unit overlain by the Magura Units. Stacking of a relatively narrow duplex led to the growth of a dome-like culmination in the lower unit, i.e., the Dukla Unit, and, as a consequence of differential uplift of the unit above and outside the duplex, the upper unit (the Magura Unit) was subjected to stretching. This process invoked normal faulting along the lateral culmination wall and was facilitated by the regional, syn-thrusting arc–parallel extension. Horizontal movement along the fault plane is a result of tear faulting accommodating a varied rate of advancement of Carpathian units. The time of the fault formation is not well constrained; however, based on superposition criterion, the syn -thrusting origin is anticipated.


2020 ◽  
Author(s):  
Jerome Fortin ◽  
Cedric Bailly ◽  
Mathilde Adelinet ◽  
Youri Hamon

<p>Linking ultrasonic measurements made on samples, with sonic logs and seismic subsurface data, is a key challenge for the understanding of carbonate reservoirs. To deal with this problem, we investigate the elastic properties of dry lacustrine carbonates. At one study site, we perform a seismic refraction survey (100 Hz), as well as sonic (54 kHz) and ultrasonic (250 kHz) measurements directly on outcrop and ultrasonic measurements on samples (500 kHz). By comparing the median of each data set, we show that the P wave velocity decreases from laboratory to seismic scale. Nevertheless, the median of the sonic measurements acquired on outcrop surfaces seems to fit with the seismic data, meaning that sonic acquisition may be representative of seismic scale. To explain the variations due to upscaling, we relate the concept of representative elementary volume with the wavelength of each scale of study. Indeed, with upscaling, the wavelength varies from millimetric to pluri-metric. This change of scale allows us to conclude that the behavior of P wave velocity is due to different geological features (matrix porosity, cracks, and fractures) related to the different wavelengths used. Based on effective medium theory, we quantify the pore aspect ratio at sample scale and the crack/fracture density at outcrop and seismic scales using a multiscale representative elementary volume concept. Results show that the matrix porosity that controls the ultrasonic P wave velocities is progressively lost with upscaling, implying that crack and fracture porosity impacts sonic and seismic P wave velocities, a result of paramount importance for seismic interpretation based on deterministic approaches.</p><p>Bailly, C., Fortin, J., Adelinet, M., & Hamon, Y. (2019). Upscaling of elastic properties in carbonates: A modeling approach based on a multiscale geophysical data set. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2019JB018391</p>


Sign in / Sign up

Export Citation Format

Share Document