Dolomitization geometry and reservoir quality from supervised Bayesian classification and probabilistic neural networks: Midland Basin Leonardian Wichita and Clear Fork Formations

2021 ◽  
Vol 9 (2) ◽  
pp. T585-T598
Author(s):  
Abidin B. Caf ◽  
John D. Pigott

Extensive dolomitization is prevalent in the platform and periplatform carbonates in the Lower-Middle Permian strata in the Midland and greater Permian Basin. Early workers have found that the platform and shelf-top carbonates were dolomitized, whereas slope and basinal carbonates remained calcitic, proposing a reflux dolomitization model as the possible diagenetic mechanism. More importantly, they underline that this dolomitization pattern controls the porosity and forms an updip seal. These studies are predominately conducted using well logs, cores, and outcrop analogs, and although exhibiting high resolution vertically, such determinations are laterally sparse. We have used supervised Bayesian classification and probabilistic neural networks (PNN) on a 3D seismic volume to create an estimation of the most probable distribution of dolomite and limestone within a subsurface 3D volume petrophysically constrained. Combining this lithologic information with porosity, we then illuminate the diagenetic effects on a seismic scale. We started our workflow by deriving lithology classifications from well-log crossplots of neutron porosity and acoustic impedance to determine the a priori proportions of the lithology and the probability density functions calculation for each lithology type. Then, we applied these probability distributions and a priori proportions to 3D seismic volumes of the acoustic impedance and predicted neutron porosity volume to create a lithology volume and probability volumes for each lithology type. The acoustic impedance volume was obtained by model-based poststack inversion, and the neutron porosity volume was obtained by the PNN. Our results best supported a regional reflux dolomitization model, in which the porosity is increasing from shelf to slope while the dolomitization is decreasing, but with sea-level forcing. With this study, we determined that diagenesis and the corresponding reservoir quality in these platforms and periplatform strata can be directly imaged and mapped on a seismic scale by quantitative seismic interpretation and supervised classification methods.

Geophysics ◽  
2005 ◽  
Vol 70 (1) ◽  
pp. P1-P11 ◽  
Author(s):  
Peter A. Dowd ◽  
Eulogio Pardo-Igúzquiza

The exact locations of horizons that separate geologic sequences are known only at physically sampled locations (e.g., borehole intersections), which, in general, are very sparse. 3D seismic data, on the other hand, provide complete coverage of a volume of interest with the possibility of detecting the boundaries between formations with, for example, contrasted acoustic impedance. Detection of boundaries is hampered, however, by coarse spatial resolution of the seismic data, together with local variability of acoustic impedance within formations. The authors propose a two-part approach to the problem, using neural networks and geostatistics. First, an artificial neural network is used for boundary detection. The training set for the neural net comprises seismic traces that are collocated with the borehole locations. Once the net is trained, it is applied to the entire seismic grid. Second, output from the neural network is processed geostatistically to filter noise and to assess the uncertainty of the boundary locations. A physical counterpart is interpreted for each structure inferred from the spatial semivariogram. Factorial kriging is used for filtering, and uncertainty in the shape of the boundaries is assessed by geostatistical simulation. In this approach, the boundary locations are interpreted as random functions that can be simulated to incorporate their uncertainty in applications. A case study of boundary detection between sandstone and breccia formations in a highly faulted zone is used to illustrate the methodologies.


1995 ◽  
Vol 31 (22) ◽  
pp. 1930-1931 ◽  
Author(s):  
D. Anguita ◽  
S. Rovetta ◽  
S. Ridella ◽  
R. Zunino

2004 ◽  
Vol 34 (1) ◽  
pp. 37-52
Author(s):  
Wiktor Jassem ◽  
Waldemar Grygiel

The mid-frequencies and bandwidths of formants 1–5 were measured at targets, at plus 0.01 s and at minus 0.01 s off the targets of vowels in a 100-word list read by five male and five female speakers, for a total of 3390 10-variable spectrum specifications. Each of the six Polish vowel phonemes was represented approximately the same number of times. The 3390* 10 original-data matrix was processed by probabilistic neural networks to produce a classification of the spectra with respect to (a) vowel phoneme, (b) identity of the speaker, and (c) speaker gender. For (a) and (b), networks with added input information from another independent variable were also used, as well as matrices of the numerical data appropriately normalized. Mean scores for classification with respect to phonemes in a multi-speaker design in the testing sets were around 95%, and mean speaker-dependent scores for the phonemes varied between 86% and 100%, with two speakers scoring 100% correct. The individual voices were identified between 95% and 96% of the time, and classifications of the spectra for speaker gender were practically 100% correct.


2008 ◽  
Vol 21 (6) ◽  
pp. 838-846 ◽  
Author(s):  
Jiří Grim ◽  
Jan Hora

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Kelin Lu ◽  
K. C. Chang ◽  
Rui Zhou

This paper addresses the problem of distributed fusion when the conditional independence assumptions on sensor measurements or local estimates are not met. A new data fusion algorithm called Copula fusion is presented. The proposed method is grounded on Copula statistical modeling and Bayesian analysis. The primary advantage of the Copula-based methodology is that it could reveal the unknown correlation that allows one to build joint probability distributions with potentially arbitrary underlying marginals and a desired intermodal dependence. The proposed fusion algorithm requires no a priori knowledge of communications patterns or network connectivity. The simulation results show that the Copula fusion brings a consistent estimate for a wide range of process noises.


Sign in / Sign up

Export Citation Format

Share Document