The Little Ice Age in Italy from documentary proxies and early instrumental records

2014 ◽  
pp. 17-30 ◽  
Author(s):  
Dario Camuffo ◽  
Chiara Bertolin ◽  
Patrizia Schenal ◽  
Alberto Craievich ◽  
Rossella Granziero
2021 ◽  
Vol 168 (1-2) ◽  
Author(s):  
Matthew J. Hannaford ◽  
Kristen K. Beck

AbstractUnderstanding of long-term climatic change prior to instrumental records necessitates reconstructions from documentary and palaeoclimate archives. In southern Africa, documentary-derived chronologies of nineteenth century rainfall variability and palaeoclimate records have permitted new insights into rainfall variability over past centuries. Rarely considered, however, is the climatic information within early colonial documentary records that emerge from the late fifteenth century onwards. This paper examines evidence for (multi-)seasonal dry and wet events within these earlier written records (c. 1550–1830 CE) from southeast Africa (Mozambique) and west-central Africa (Angola) in conjunction with palaeoclimate records from multiple proxies. Specifically, it aims to understand whether these sources agree in their signals of rainfall variability over a 280-year period covering the ‘main phase’ Little Ice Age (LIA) in southern Africa. The two source types generally, but do not always, show agreement within the two regions. This appears to reflect both the nature of rainfall variability and the context behind documentary recording. Both source types indicate that southeast and west-central Africa were distinct regions of rainfall variability over seasonal and longer timescales during the LIA, with southeast Africa being generally drier and west-central Africa generally wetter. However, the documentary records reveal considerable variability within these mean state climatic conditions, with multi-year droughts a recurrent feature in both regions. An analysis of long-term rainfall links with the El Niño–Southern Oscillation (ENSO) in southeast Africa suggests a complex and possibly non-stationary relationship. Overall, early colonial records provide valuable information for constraining hydroclimate variability where palaeoclimate records remain sparse.


Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


2013 ◽  
Vol 6 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Anastasia Gornostayeva ◽  
◽  
Dmitry Demezhko ◽  
◽  
Keyword(s):  

2020 ◽  
Vol 42 (1) ◽  
pp. 4-12
Author(s):  
Valeriy Fedorov ◽  
Denis Frolov

Author(s):  
Greg M. Stock ◽  
◽  
Robert S. Anderson ◽  
Thomas H. Painter ◽  
Brian Henn ◽  
...  

Weather ◽  
2016 ◽  
Vol 71 (4) ◽  
pp. 100-102
Author(s):  
Gerald Stanhill
Keyword(s):  

The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Maegen L Rochner ◽  
Karen J Heeter ◽  
Grant L Harley ◽  
Matthew F Bekker ◽  
Sally P Horn

Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.


Sign in / Sign up

Export Citation Format

Share Document