Climate-induced treeline mortality during the termination of the Little Ice Age in the Greater Yellowstone Ecoregion, USA

The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Maegen L Rochner ◽  
Karen J Heeter ◽  
Grant L Harley ◽  
Matthew F Bekker ◽  
Sally P Horn

Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.

1999 ◽  
Vol 28 ◽  
pp. 123-128 ◽  
Author(s):  
Manuela Pelfini

AbstractIn the Italian Alps, the maximum advance of the Holocene usually coincided with the Little Ice Age (LIA), which reached a climax for most glaciers during the first two decades of the 19th century. Moraines deposited during the peak of the LIA usually obliterated glacial deposits from previous advances. Using dendrogeomorphology, it is possible to date glacier advances before the LIA peak. In the central Italian Alps, it was possible to pinpoint an advance of Ghiacciaio del Madaccio, which took place in the first two decades of the 17th century. With dendrogeomorphology, it is also possible to reconstruct in detail the behaviour of glaciers during the Little Ice Age climax. Trees growing on the margin of glacier tongues may have suffered damage, recognizable by the presence of wood scars and the formation of particularly thin rings; their dating allows both ice advances and retreats to be dated. This is the case for Ghiacciaio Grande di Verra in the western Italian Alps; owing to the rapid decrease of the tree ring widths, it is possible to recognize climate changes responsible for both lower wood production and, sometimes, subsequent glacier advances, although the latter take place with a certain delay. For Ghiacciaio del Lys in the western Italian Alps, a response time of five years was determined.


Author(s):  
Adam Sookdeo ◽  
Bernd Kromer ◽  
Florian Adolphi ◽  
Jürg Beer ◽  
Nicolas Brehm ◽  
...  

<p>The Younger Dryas stadial (YD) was a return to glacial-like conditions in the North Atlantic region that interrupted deglacial warming around 12900 cal BP (before 1950 AD). Terrestrial and marine records suggest this event was initiated by the interruption of deep-water formation arising from North American freshwater runoff, but the causes of the millennia-long duration remain unclear. To investigate the solar activity, a possible YD driver, we exploit the cosmic production signals of tree-ring radiocarbon (<sup>14</sup>C) and ice-core beryllium-10 (<sup>10</sup>Be). Here we present the highest temporally resolved dataset of <sup>14</sup>C measurements (n = 1558) derived from European tree rings that have been accurately extended back to 14226 cal BP (±8, 2-σ), allowing precise alignment of ice-core records across this period. We identify a substantial increase in <sup>14</sup>C and <sup>10</sup>Be production starting at 12780 cal BP is comparable in magnitude to the historic Little Ice Age, being a clear sign of grand solar minima. We hypothesize the timing of the grand solar minima provides a significant amplifying factor leading to the harsh sustained glacial-like conditions seen in the YD.</p>


2003 ◽  
Vol 35 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Gregory C. Wiles ◽  
Ryan P. McAllister ◽  
Nicole K. Davi ◽  
Gordon C. Jacoby

2019 ◽  
Vol 223 ◽  
pp. 39-49 ◽  
Author(s):  
Ara Cho ◽  
Kaoru Kashima ◽  
Koji Seto ◽  
Kazuyoshi Yamada ◽  
Takumi Sato ◽  
...  

The Holocene ◽  
2020 ◽  
Vol 30 (11) ◽  
pp. 1643-1648 ◽  
Author(s):  
Peter N Peregrine

The Late Antique Little Ice Age, spanning the period from 536 CE to roughly 560 CE, saw temperatures in the Northern Hemisphere drop by a degree C in less than a decade. This rapid cooling is thought to have caused widespread famine, epidemic disease, and social disruption. The relationship between cooling and social disruption is examined here using a set of high-resolution climate and historical data. A significant link between cooling and social disruption is demonstrated, but it is also demonstrated that the link is highly variable, with some societies experiencing dramatic cooling changing very little, and others experiencing only slight cooling changing dramatically. This points to variation in vulnerability, and serves to establish the Late Antique Little Ice Age as a context within which naturalistic quasi-experiments on vulnerability to climate change might be conducted.


2011 ◽  
Vol 75 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Chad S. Lane ◽  
Sally P. Horn ◽  
Kenneth H. Orvis ◽  
John M. Thomason

AbstractClimate change during the so-called Little Ice Age (LIA) of the 15th to 19th centuries was once thought to be limited to the high northern latitudes, but increasing evidence reflects significant climate change in the tropics. One of the hypothesized features of LIA climate in the low latitudes is a more southerly mean annual position of the Intertropical Convergence Zone (ITCZ), which produced more arid conditions through much of the northern tropics. High-resolution stable oxygen isotope data and other sedimentary evidence from Laguna de Felipe, located on the Caribbean slope of the Cordillera Central of the Dominican Republic, support the hypothesis that the mean annual position of the ITCZ was displaced significantly southward during much of the LIA. Placed within the context of regional paleoclimate and paleoceanographic records, and reconstructions of global LIA climate, this shift in mean annual ITCZ position appears to have been induced by lower solar insolation and internal dynamical responses of the global climate system. Our results from Hispaniola further emphasize the global nature of LIA climate change and the sensitivity of circum-Caribbean climate conditions to what are hypothesized to be relatively small variations in global energy budgets.


Sign in / Sign up

Export Citation Format

Share Document