scholarly journals Uniqueness of two-convex closed ancient solutions to the mean curvature flow

2020 ◽  
Vol 192 (2) ◽  
pp. 353
Author(s):  
Angenent ◽  
Daskalopoulos ◽  
Sesum
2020 ◽  
Vol 102 (1) ◽  
pp. 162-171
Author(s):  
ZHENGCHAO JI

We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find conditions on the second fundamental form that characterise the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension two surfaces.


2016 ◽  
Vol 24 (3) ◽  
pp. 593-604 ◽  
Author(s):  
Robert Haslhofer ◽  
Or Hershkovits

2015 ◽  
Vol 101 (2) ◽  
pp. 267-287 ◽  
Author(s):  
Gerhard Huisken ◽  
Carlo Sinestrari

2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


Author(s):  
Peng Lu ◽  
Jiuru Zhou

AbstractWe construct the ancient solutions of the hypersurface flows in Euclidean spaces studied by B. Andrews in 1994.As time {t\rightarrow 0^{-}} the solutions collapse to a round point where 0 is the singular time. But as {t\rightarrow-\infty} the solutions become more and more oval. Near the center the appropriately-rescaled pointed Cheeger–Gromov limits are round cylinder solutions {S^{J}\times\mathbb{R}^{n-J}}, {1\leq J\leq n-1}. These results are the analog of the corresponding results in Ricci flow ({J=n-1}) and mean curvature flow.


2017 ◽  
Vol 320 ◽  
pp. 674-729 ◽  
Author(s):  
Juan Dávila ◽  
Manuel del Pino ◽  
Xuan Hien Nguyen

2018 ◽  
Vol 2018 (743) ◽  
pp. 229-244 ◽  
Author(s):  
Jingyi Chen ◽  
John Man Shun Ma

Abstract Let F_{n} : (Σ, h_{n} ) \to \mathbb{C}^{2} be a sequence of conformally immersed Lagrangian self-shrinkers with a uniform area upper bound to the mean curvature flow, and suppose that the sequence of metrics \{ h_{n} \} converges smoothly to a Riemannian metric h. We show that a subsequence of \{ F_{n} \} converges smoothly to a branched conformally immersed Lagrangian self-shrinker F_{\infty} : (Σ, h) \to \mathbb{C}^{2} . When the area bound is less than 16π, the limit {F_{\infty}} is an embedded torus. When the genus of Σ is one, we can drop the assumption on convergence h_{n} \to h. When the genus of Σ is zero, we show that there is no branched immersion of Σ as a Lagrangian self-shrinker, generalizing the rigidity result of [21] in dimension two by allowing branch points.


Sign in / Sign up

Export Citation Format

Share Document