scholarly journals Nematicidal and Plant Growth-Promoting Activity of Enterobacter asburiae HK169: Genome Analysis Provides Insight into Its Biological Activities

2018 ◽  
Vol 28 (6) ◽  
pp. 968-975 ◽  
Author(s):  
Mira Oh ◽  
Jae Woo Han ◽  
Chanhui Lee ◽  
Gyung Ja Choi ◽  
Hun Kim
PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0207968 ◽  
Author(s):  
Yong-Hak Kim ◽  
Yunhee Choi ◽  
Yu Yeong Oh ◽  
Nam-Chul Ha ◽  
Jaekyeong Song

2000 ◽  
Vol 41 (18) ◽  
pp. 3453-3457 ◽  
Author(s):  
Jun-ichi Furukawa ◽  
Shigeru Kobayashi ◽  
Motoyoshi Nomizu ◽  
Norio Nishi ◽  
Nobuo Sakairi

2007 ◽  
Vol 2 (8) ◽  
pp. 1934578X0700200 ◽  
Author(s):  
Manoj K Goel ◽  
Arun K Kukreja ◽  
Anil K Singh ◽  
Suman Preet S Khanuja

Phyllocladane diterpenoids, particularly calliterpenone (1) and calliterpenone monoacetate (2), isolated from leaves of Callicarpa macrophylla, produced significantly higher growth and multiplication of in vitro shoot cultures of Rauwolfia serpentina at 0.25 and 0.5 mg/L concentrations, respectively, compared to certain other plant growth regulators (0.1-5.0 mg/L) tested under in vitro conditions. This is the first report of the plant growth promoting activities of 1 and 2 in plant tissue cultures.


2020 ◽  
pp. 1186-1194
Author(s):  
Roberta Mendes dos Santos ◽  
Everlon Cid Rigobelo

The search for plant growth-promoting rhizobacteria is an ongoing need for the development of new bioinoculants for use in various crops, including sugarcane. Bacterial strains with various plant growth-promoting properties can contribute to sustainable agricultural production. The present study aimed to isolate, characterize and select sugarcane rhizobacteria from six different varieties through principal components analysis. This study selected 167 bacterial strains with the ability to fix nitrogen, produce indolacetic acid, exhibit cellulolytic activity, and solubilize phosphate and potassium were isolated. Of these 167 bacterial strains, seven were selected by principal component analysis and identified as belonging to the genera Staphylococcus, Enterobacter, Bacillus and Achromobacter. Bacillus thuringiensis IP21 presented higher potential for nitrogen fixation and CaPO4 and AlPO4 solubilization and a lower potential for K solubilization in sugarcane. Enterobacter asburiae IP24 was efficient in indolacetic acid production and CaPO4 and FePO4 solubilization and inefficient for Araxá apatite solubilization.


Sign in / Sign up

Export Citation Format

Share Document