Body Sensors and Healthcare Monitoring

Author(s):  
Begonya Otal ◽  
Luis Alonso ◽  
Christos V. Verikoukis

The aging population and the high expectations towards quality of life in our society lead to the need of more efficient and affordable medical systems and monitoring solutions. The development of wireless Body Sensor Networks (BSNs) offers a platform to establish such a healthcare monitoring systems. However, BSNs in the healthcare domain operate under conflicting requirements. These are the maintenance of the desired reliability and message latency of data transmissions (i.e. quality of service), while simultaneously maximizing battery lifetime of individual body sensors. In doing so, the characteristics of the entire system, especially the Medium Access Control (MAC) layer, have to be considered. For this reason, this chapter aims for the optimization of the MAC layer by using energy-saving techniques for BSNs. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSNs requirements highlights the need for the design of new scalable MAC solutions, which guarantee low-power consumption to the maximum number of body sensors in high density areas (i.e., in saturation conditions). In order to emphasize IEEE 802.15.4 MAC limitations, this chapter presents a detailed overview of this de facto standard for Wireless Sensor Networks (WSNs), which serves as a link for the introduction and description of the here proposed Distributed Queuing (DQ) MAC protocol for BSN scenarios. Within this framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly dense BSNs. The obtained results show that the proposed scheme outperforms IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a better overall performance that scales appropriately to BSNs under high traffic conditions. These benefits are obtained by eliminating back-off periods and collisions in data packet transmissions, while minimizing the control overhead.

2021 ◽  
Author(s):  
Harminder Kaur ◽  
Sharvan Kumar Pahuja

Wireless Body Area Networks, also known as the Wireless Body Sensor Networks, provides the monitoring of the health parameters in remote areas and where the medical facility is not available. Wireless Body Sensor Networks contains the body or placement of the sensors on body for measuring the medical and non-medical parameters. These networks share the wireless medium for the transmission of the data from one place to another. So the design of Medium Access Control is a challenging task for the WBSNs due to wireless media for less energy consumption and mobility. Various MAC protocols are designed to provide less energy consumption and improve the network lifetime. This paper presents the study of these existing MAC layer protocols based on different QoS parameters that define the network quality.


Author(s):  
Yousef S. Kavian ◽  
Hadi Rasouli

The energy efficiency is a main challenging issue for employing wireless sensor networks (WSNs) in extreme environments where the media access progress consumes the main part of network energy. The IEEE 802.15.4 is adopted in low complexity, ultra-low power and low data rate wireless sensor applications where the energy consumption of nodes should be managed carefully in harsh and inaccessible environments. The beacon-enabled mode of the IEEE 802.15.4 provides a power management scheme. When the network traffic is variable, this mode does not work as well and the coordinator is not capable for estimating the network traffic and adjusting proper duty cycle dynamically. In this chapter an approach for estimating network traffic in star topology is proposed to overcome this issue where the coordinator could estimate the network traffic and dynamically adjusts duty cycle proportion to the variation of network traffic. The simulation results demonstrate the superiority of proposed approach for improving the energy consumption, throughput and delay in comparison with the IEEE 802.15.4 under different traffic conditions.


Author(s):  
Kai Lin ◽  
Min Chen ◽  
Joel J. P. C. Rodrigues ◽  
Hongwei Ge

Body Sensor Networks (BSNs) are formed by the equipped or transplanted sensors in the human body, which can sense the physiology and environment parameters. As a novel e-health technology, BSNs promote the deployment of innovative healthcare monitoring applications. In the past few years, most of the related research works have focused on sensor design, signal processing, and communication protocol. This chapter addresses the problem of system design and data fusion technology over a bandwidth and energy constrained body sensor network. Compared with the traditional sensor network, miniaturization and low-power are more important to meet the requirements to facilitate wearing and long-running operation. As there are strong correlations between sensory data collected from different sensors, data fusion is employed to reduce the redundant data and the load in body sensor networks. To accomplish the complex task, more than one kind of node must be equipped or transplanted to monitor multi-targets, which makes the fusion process become sophisticated. In this chapter, a new BSNs system is designed to complete online diagnosis function. Based on the principle of data fusion in BSNs, we measure and investigate its performance in the efficiency of saving energy. Furthermore, the authors discuss the detection and rectification of errors in sensory data. Then a data evaluation method based on Bayesian estimation is proposed. Finally, the authors verify the performance of the designed system and the validity of the proposed data evaluation method. The chapter is concluded by identifying some open research issues on this topic.


Author(s):  
José A. Afonso ◽  
Pedro Macedo ◽  
Luis A. Rocha ◽  
José H. Correia

Conventional wired body sensor networks have been used in hospitals over the last decade; however, the tethered operation restricts the mobility of the patients. In the scenario considered in this chapter, the signals collected from the patients’ bodies are wirelessly transmitted to a base station, and then delivered to a remote diagnosis centre through a communication infrastructure, enabling full mobility of the patient in the coverage area of the wireless network. Healthcare applications require the network to satisfy demanding requirements in terms of quality of service (QoS) and, at the same time, minimize the energy consumption of the sensor nodes. The traffic generated by data-intensive healthcare applications may lead to frequent collisions between sensor nodes and the consequent loss of data, if conventional MAC protocols for wireless sensor networks are used. Therefore, this chapter presents LPRT and CCMAC, two MAC protocols that intend to satisfy the QoS requirements of these applications, but differ in the wireless topology used. Experimental results for an implementation of the LPRT using an IEEE 802.15.4 compliant wireless sensor platform are presented, as well as simulation results comparing the performance of direct communication (between wireless body sensor nodes and the base station) with two other approaches relying on a cluster-based topology (similar to the one proposed by the authors of LEACH), which demonstrate the benefits of using a cluster-based topology on wireless healthcare applications.


Sign in / Sign up

Export Citation Format

Share Document