Software Effort Estimation

Author(s):  
Jeremiah D. Deng ◽  
Martin Purvis ◽  
Maryam Purvis

Software development effort estimation is important for quality management in the software development industry, yet its automation still remains a challenging issue. Applying machine learning algorithms alone often cannot achieve satisfactory results. This paper presents an integrated data mining framework that incorporates domain knowledge into a series of data analysis and modeling processes, including visualization, feature selection, and model validation. An empirical study on the software effort estimation problem using a benchmark dataset shows the necessity and effectiveness of the proposed approach.

2011 ◽  
Vol 7 (3) ◽  
pp. 41-53 ◽  
Author(s):  
Jeremiah D. Deng ◽  
Martin Purvis ◽  
Maryam Purvis

Software development effort estimation is important for quality management in the software development industry, yet its automation still remains a challenging issue. Applying machine learning algorithms alone often cannot achieve satisfactory results. This paper presents an integrated data mining framework that incorporates domain knowledge into a series of data analysis and modeling processes, including visualization, feature selection, and model validation. An empirical study on the software effort estimation problem using a benchmark dataset shows the necessity and effectiveness of the proposed approach.


2016 ◽  
Vol 13 (10) ◽  
pp. 7093-7098 ◽  
Author(s):  
Shivakumar Nagarajan ◽  
Balaji Narayanan

Software development effort estimation is the way of predicting the effort to improve software economics. Accurate estimation of effort is the most tedious tasks in software projects. However, several methods are used to estimate the software development effort accurately. Imprecise estimation can leads to project failure due to uncertain data. In this paper, a hybrid model based on combination of Particle Swarm Optimization (PSO), K-means clustering algorithms, neural network and ABE method is proposed. The proposed method can be useful to predict better clustering and more accurate estimation and hence, there are difficulties in clustering and outliers in the software projects. The obtained results showed the better clustering result which provides the estimation result accurately. Then, neural network and Analogy methods are used which enhance the accuracy significantly.


Author(s):  
FATIMA AZZAHRA AMAZAL ◽  
ALI IDRI ◽  
ALAIN ABRAN

Software effort estimation is one of the most important tasks in software project management. Of several techniques suggested for estimating software development effort, the analogy-based reasoning, or Case-Based Reasoning (CBR), approaches stand out as promising techniques. In this paper, the benefits of using linguistic rather than numerical values in the analogy process for software effort estimation are investigated. The performance, in terms of accuracy and tolerance of imprecision, of two analogy-based software effort estimation models (Classical Analogy and Fuzzy Analogy, which use numerical and linguistic values respectively to describe software projects) is compared. Three research questions related to the performance of these two models are discussed and answered. This study uses the International Software Benchmarking Standards Group (ISBSG) dataset and confirms the usefulness of using linguistic instead of numerical values in analogy-based software effort estimation models.


Effort estimation is a crucial step that leads to Duration estimation and cost estimation in software development. Estimations done in the initial stage of projects are based on requirements that may lead to success or failure of the project. Accurate estimations lead to success and inaccurate estimates lead to failure. There is no one particular method which cloud do accurate estimations. In this work, we propose Machine learning techniques linear regression and K-nearest Neighbors to predict Software Effort estimation using COCOMO81, COCOMONasa, and COCOMONasa2 datasets. The results obtained from these two methods have been compared. The 80% data in data sets used for training and remaining used as the test set. The correlation coefficient, Mean squared error (MSE) and Mean magnitude relative error (MMRE) are used as performance metrics. The experimental results show that these models forecast the software effort accurately.


2021 ◽  
Vol 6 (2) ◽  
pp. 167-174
Author(s):  
Abdul Latif ◽  
Lady Agustin Fitriana ◽  
Muhammad Rifqi Firdaus

Software development involves several interrelated factors that influence development efforts and productivity. Improving the estimation techniques available to project managers will facilitate more effective time and budget control in software development. Software Effort Estimation or software cost/effort estimation can help a software development company to overcome difficulties experienced in estimating software development efforts. This study aims to compare the Machine Learning method of Linear Regression (LR), Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Decision Tree Random Forest (DTRF) to calculate estimated cost/effort software. Then these five approaches will be tested on a dataset of software development projects as many as 10 dataset projects. So that it can produce new knowledge about what machine learning and non-machine learning methods are the most accurate for estimating software business. As well as knowing between the selection between using Particle Swarm Optimization (PSO) for attributes selection and without PSO, which one can increase the accuracy for software business estimation. The data mining algorithm used to calculate the most optimal software effort estimate is the Linear Regression algorithm with an average RMSE value of 1603,024 for the 10 datasets tested. Then using the PSO feature selection can increase the accuracy or reduce the RMSE average value to 1552,999. The result indicates that, compared with the original regression linear model, the accuracy or error rate of software effort estimation has increased by 3.12% by applying PSO feature selection


Sign in / Sign up

Export Citation Format

Share Document