The Evolution of Intelligent Classifiers into an Integrated Approach to Correct RFID Anomalies

Author(s):  
Peter Darcy ◽  
Bela Stantic ◽  
Abdul Sattar

Radio Frequency Identification (RFID) refers to wireless technology that is used to seamlessly and automatically track various amounts of items around an environment. This technology has the potential to improve the efficiency and effectiveness of tasks such as shopping and inventory saving commercial organisations both time and money. Unfortunately, the wide scale adoption of RFID systems have been hindered due to issues such as false-negative and false-positive anomalies that lower the integrity of captured data. In this chapter, we propose the utilisation three highly intelligent classifiers, specifically a Bayesian Network, Neural Network and Non-Monotonic Reasoning, to handle missing, wrong and duplicate observations. After discovering the potential from using Bayesian Networks, Neural Networks and Non-Monotonic Reasoning to correct captured data, we decided to improve upon the original approach by combining the three methodologies into an integrated classifier. From our experimental evaluation, we have shown the high results obtained from cleaning both false-negative and false-positive anomalies using each of our concepts, and the potential it holds to enhance physical RFID systems.

Author(s):  
Yubao Hou ◽  
Hua Liang ◽  
Juan liu

In the traditional RFID (Radio Frequency IDentification) system, a secure wired channel communication is used between the reader and the server. The newly produced mobile RFID system is different from the traditional RFID system, the communication between the reader and the server is based on a wireless channel, and the authentication protocol is suitable for traditional RFID systems, but it cannot be used in mobile RFID systems. To solve this problem, a mutual authentication protocol MSB (Most Significant Bit) for super lightweight mobile radio frequency identification system is proposed based on bit replacement operation. MSB is a bitwise operation to encrypt information and reduce the computational load of communication entities. Label, readers, and servers authenticate first and then communicate, MSB may be used to resistant to common attacks. The security analysis of the protocol shows that the protocol has high security properties, the performance analysis of the protocol shows that the protocol has the characteristics of low computational complexity, the formal analysis of the protocol based on GNY logic Gong et al. (1990) provides a rigorous reasoning proof process for the protocol.


Author(s):  
Brian Bucci ◽  
Jeffrey Vipperman

In extension of previous methods to identify military impulse noise in the civilian environmental noise monitoring setting by means of a set of computed scalar metrics input to artificial neural network structures, Bayesian methods are investigated to classify the same dataset. Four interesting cases are identified and analyzed: A) Maximum accuracy achieve on training data, B) Maximum overall accuracy on blind testing data, C) Maximum accuracy on testing data with zero false positive detections, D) Maximum accuracy on testing data with zero false negative rejections. The first case is used to illustrative example and the later three represent actual monitoring modes. All of the cases are compared and contrasted to illuminate respective strengths and weaknesses. Overall accuracies of up to 99.8% are observed with no false negative rejections and accuracies of up to 98.4% are also achieved with no false positive detections.


2019 ◽  
pp. 155-168
Author(s):  
Murukesan Loganathan ◽  
Thennarasan Sabapathy ◽  
Mohamed Elobaid Elshaikh ◽  
Mohamed Nasrun Osman ◽  
Rosemizi Abd Rahim ◽  
...  

Efficient collision arbitration protocol facilitates fast tag identification in radio frequency identification (RFID) systems. EPCGlobal-Class1-Generation2 (EPC-C1G2) protocol is the current standard for collision arbitration in commercial RFID systems. However, the main drawback of this protocol is that it requires excessive message exchanges between tags and the reader for its operation. This wastes energy of the already resource-constrained RFID readers. Hence, in this work, reinforcement learning based anti-collision protocol (RL-DFSA) is proposed to address the energy efficient collision arbitration problem in the RFID system. The proposed algorithm continuously learns and adapts to the changes in the environment by devising an optimal policy. The proposed RL-DFSA was evaluated through extensive simulations and compared with the variants of EPC-C1G2 algorithms that are currently being used in the commercial readers. Based on the results, it is concluded that RL-DFSA performs equal or better than EPC-C1G2 protocol in delay, throughput and time system efficiency when simulated for sparse and dense environments while requiring one order of magnitude lesser control message exchanges between the reader and the tags.


2021 ◽  
Vol 21 (4) ◽  
pp. 316-321
Author(s):  
Abdul Basit ◽  
Muhammad Irfan Khattak ◽  
Ayman Althuwayb ◽  
Jamel Nebhen

In this article, a simple method is developed to design a highly miniaturized tri-band bandpass filter (BPF) utilizing two asymmetric coupled resonators with one step discontinuity and one uniform impedance resonator (UIR) for worldwide interoperability for microwave access (WiMAX) and radio frequency identification (RFID) applications. The first and second passbands located at 3.7 GHz and 6.6 GHz are achieved through two asymmetric coupled step impedance resonators (SIRs), while the third passband, centered at 9 GHz, is achieved using a half-wavelength UIR, respectively. The fundamental frequencies of this BPF are implemented by tuning the physical length ratio (α) and impedance ratio (R) of the asymmetric SIRs. The proposed filter is designed and fabricated with a circuit dimension of 13.69 mm × 25 mm (0.02 λg × 0.03 λg), where λg represents the guided wavelength at the first passband. The experimental and measured results are provided with good matching.


2013 ◽  
pp. 1667-1681 ◽  
Author(s):  
Morshed U. Chowdhury ◽  
Biplob R. Ray

Remote technologies are changing our way of life. The radio frequency identification (RFID) system is a new technology which uses the open air to transmit information. This information transmission needs to be protected to provide user safety and privacy. Business will look for a system that has fraud resilience to prevent the misuse of information to take dishonest advantage. The business and the user need to be assured that the transmitted information has no content which is capable of undertaking malicious activities. Public awareness of RFID security will help users and organizations to understand the need for security protection. Publishing a security guideline from the regulating body and monitoring implementation of that guideline in RFID systems will ensure that businesses and users are protected. This chapter explains the importance of security in a RFID system and will outline the protective measures. It also points out the research direction of RFID systems.


Author(s):  
Morshed U. Chowdhury ◽  
Biplob R. Ray

Remote technologies are changing our way of life. The radio frequency identification (RFID) system is a new technology which uses the open air to transmit information. This information transmission needs to be protected to provide user safety and privacy. Business will look for a system that has fraud resilience to prevent the misuse of information to take dishonest advantage. The business and the user need to be assured that the transmitted information has no content which is capable of undertaking malicious activities. Public awareness of RFID security will help users and organizations to understand the need for security protection. Publishing a security guideline from the regulating body and monitoring implementation of that guideline in RFID systems will ensure that businesses and users are protected. This chapter explains the importance of security in a RFID system and will outline the protective measures. It also points out the research direction of RFID systems.


2019 ◽  
Vol 41 (12) ◽  
pp. 3331-3339
Author(s):  
Xiaolei Yu ◽  
Yujun Zhou ◽  
Zhenlu Liu ◽  
Zhimin Zhao

In this paper, a multi-tag optimization method based on image analysis and particle swarm optimization (PSO) neural network is proposed to verify the effect of radio frequency identification (RFID) multi-tag distribution on the performance of the system. A RFID tag detection system is proposed with two charge coupled device (CCD). This system can automatically focus on the tag according to its position, so it can obtain the image information more accurately by template matching and edge detection method. Therefore, the spatial structure of multi-tag and the corresponding reading distance can be obtained for training. Because of its excellent performance in multi-objective optimization, the PSO neural network is used to train and predict multi-tag distribution at the maximum reading distance. Compared with other neural networks, PSO is more accurate and its uptime is shorter for RFID multi-tag analysis.


2012 ◽  
Vol 433-440 ◽  
pp. 740-745 ◽  
Author(s):  
Sasan Mohammadi ◽  
Abolfazl Rajabi ◽  
Mostafa Tavassoli

In this paper, the new technology of RDIF (Radio Frequency Identification) has been used in order to identify vehicles and also 3 significant parameters including the average speed of vehicles at any side of access point, the average time for waiting and the queue length. They have been used based on the data from neural network for making the best decision throughout the process of finding out duration of the cycle and percentage of green time for each of the access point. Implementation of this system is possible in the shortest time and it has a better function in any kind of weather condition, time or place compared to similar systems.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ju-min Zhao ◽  
Ding Feng ◽  
Deng-ao Li ◽  
Wei Gong ◽  
Hao-xiang Liu ◽  
...  

Radio Frequency Identification (RFID) is an emerging technology for electronic labeling of objects for the purpose of automatically identifying, categorizing, locating, and tracking the objects. But in their current form RFID systems are susceptible to cloning attacks that seriously threaten RFID applications but are hard to prevent. Existing protocols aimed at detecting whether there are cloning attacks in single-reader RFID systems. In this paper, we investigate the cloning attacks identification in the multireader scenario and first propose a time-efficient protocol, called the time-efficient Cloning Attacks Identification Protocol (CAIP) to identify all cloned tags in multireaders RFID systems. We evaluate the performance of CAIP through extensive simulations. The results show that CAIP can identify all the cloned tags in large-scale RFID systems fairly fast with required accuracy.


Sign in / Sign up

Export Citation Format

Share Document