scholarly journals Compact Tri-band Bandpass Filter Based on Asymmetric Step Impedance Resonators for WiMAX and RFID Systems

2021 ◽  
Vol 21 (4) ◽  
pp. 316-321
Author(s):  
Abdul Basit ◽  
Muhammad Irfan Khattak ◽  
Ayman Althuwayb ◽  
Jamel Nebhen

In this article, a simple method is developed to design a highly miniaturized tri-band bandpass filter (BPF) utilizing two asymmetric coupled resonators with one step discontinuity and one uniform impedance resonator (UIR) for worldwide interoperability for microwave access (WiMAX) and radio frequency identification (RFID) applications. The first and second passbands located at 3.7 GHz and 6.6 GHz are achieved through two asymmetric coupled step impedance resonators (SIRs), while the third passband, centered at 9 GHz, is achieved using a half-wavelength UIR, respectively. The fundamental frequencies of this BPF are implemented by tuning the physical length ratio (α) and impedance ratio (R) of the asymmetric SIRs. The proposed filter is designed and fabricated with a circuit dimension of 13.69 mm × 25 mm (0.02 λg × 0.03 λg), where λg represents the guided wavelength at the first passband. The experimental and measured results are provided with good matching.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ju-min Zhao ◽  
Ding Feng ◽  
Deng-ao Li ◽  
Wei Gong ◽  
Hao-xiang Liu ◽  
...  

Radio Frequency Identification (RFID) is an emerging technology for electronic labeling of objects for the purpose of automatically identifying, categorizing, locating, and tracking the objects. But in their current form RFID systems are susceptible to cloning attacks that seriously threaten RFID applications but are hard to prevent. Existing protocols aimed at detecting whether there are cloning attacks in single-reader RFID systems. In this paper, we investigate the cloning attacks identification in the multireader scenario and first propose a time-efficient protocol, called the time-efficient Cloning Attacks Identification Protocol (CAIP) to identify all cloned tags in multireaders RFID systems. We evaluate the performance of CAIP through extensive simulations. The results show that CAIP can identify all the cloned tags in large-scale RFID systems fairly fast with required accuracy.


2019 ◽  
Vol 8 (2) ◽  
pp. 10-17 ◽  
Author(s):  
E. Cetin ◽  
M. B. Sahin ◽  
O. Ergul

We present a numerical investigation of effective chipless tags for radio-frequency-identification (RFID) applications. Chipless tags have been introduced recently as alternatives to standard tags with microchips. While they can significantly reduce the overall cost of RFID systems by eliminating microchips and procedures to mount them on tags, chipless tags bring new challenges, especially in terms of identification reliability. We focus on tag structures that consist of resonators and consider alternative scenarios to find out potential misidentification cases. We also present the robustness of resonator-type elements in terms of fabrication errors, as well as array strategies to significantly increase electromagnetic responses of tags at the cost of reduced compactness.


Author(s):  
Yubao Hou ◽  
Hua Liang ◽  
Juan liu

In the traditional RFID (Radio Frequency IDentification) system, a secure wired channel communication is used between the reader and the server. The newly produced mobile RFID system is different from the traditional RFID system, the communication between the reader and the server is based on a wireless channel, and the authentication protocol is suitable for traditional RFID systems, but it cannot be used in mobile RFID systems. To solve this problem, a mutual authentication protocol MSB (Most Significant Bit) for super lightweight mobile radio frequency identification system is proposed based on bit replacement operation. MSB is a bitwise operation to encrypt information and reduce the computational load of communication entities. Label, readers, and servers authenticate first and then communicate, MSB may be used to resistant to common attacks. The security analysis of the protocol shows that the protocol has high security properties, the performance analysis of the protocol shows that the protocol has the characteristics of low computational complexity, the formal analysis of the protocol based on GNY logic Gong et al. (1990) provides a rigorous reasoning proof process for the protocol.


2019 ◽  
pp. 155-168
Author(s):  
Murukesan Loganathan ◽  
Thennarasan Sabapathy ◽  
Mohamed Elobaid Elshaikh ◽  
Mohamed Nasrun Osman ◽  
Rosemizi Abd Rahim ◽  
...  

Efficient collision arbitration protocol facilitates fast tag identification in radio frequency identification (RFID) systems. EPCGlobal-Class1-Generation2 (EPC-C1G2) protocol is the current standard for collision arbitration in commercial RFID systems. However, the main drawback of this protocol is that it requires excessive message exchanges between tags and the reader for its operation. This wastes energy of the already resource-constrained RFID readers. Hence, in this work, reinforcement learning based anti-collision protocol (RL-DFSA) is proposed to address the energy efficient collision arbitration problem in the RFID system. The proposed algorithm continuously learns and adapts to the changes in the environment by devising an optimal policy. The proposed RL-DFSA was evaluated through extensive simulations and compared with the variants of EPC-C1G2 algorithms that are currently being used in the commercial readers. Based on the results, it is concluded that RL-DFSA performs equal or better than EPC-C1G2 protocol in delay, throughput and time system efficiency when simulated for sparse and dense environments while requiring one order of magnitude lesser control message exchanges between the reader and the tags.


2013 ◽  
pp. 1667-1681 ◽  
Author(s):  
Morshed U. Chowdhury ◽  
Biplob R. Ray

Remote technologies are changing our way of life. The radio frequency identification (RFID) system is a new technology which uses the open air to transmit information. This information transmission needs to be protected to provide user safety and privacy. Business will look for a system that has fraud resilience to prevent the misuse of information to take dishonest advantage. The business and the user need to be assured that the transmitted information has no content which is capable of undertaking malicious activities. Public awareness of RFID security will help users and organizations to understand the need for security protection. Publishing a security guideline from the regulating body and monitoring implementation of that guideline in RFID systems will ensure that businesses and users are protected. This chapter explains the importance of security in a RFID system and will outline the protective measures. It also points out the research direction of RFID systems.


Author(s):  
Morshed U. Chowdhury ◽  
Biplob R. Ray

Remote technologies are changing our way of life. The radio frequency identification (RFID) system is a new technology which uses the open air to transmit information. This information transmission needs to be protected to provide user safety and privacy. Business will look for a system that has fraud resilience to prevent the misuse of information to take dishonest advantage. The business and the user need to be assured that the transmitted information has no content which is capable of undertaking malicious activities. Public awareness of RFID security will help users and organizations to understand the need for security protection. Publishing a security guideline from the regulating body and monitoring implementation of that guideline in RFID systems will ensure that businesses and users are protected. This chapter explains the importance of security in a RFID system and will outline the protective measures. It also points out the research direction of RFID systems.


2019 ◽  
Vol 11 (2) ◽  
pp. 31 ◽  
Author(s):  
Naser Ojaroudi Parchin ◽  
Haleh Jahanbakhsh Basherlou ◽  
Raed Abd-Alhameed ◽  
James Noras

Over the past decade, radio-frequency identification (RFID) technology has attracted significant attention and become very popular in different applications, such as identification, management, and monitoring. In this study, a dual-band microstrip-fed monopole antenna has been introduced for RFID applications. The antenna is designed to work at the frequency ranges of 2.2–2.6 GHz and 5.3–6.8 GHz, covering 2.4/5.8 GHz RFID operation bands. The antenna structure is like a modified F-shaped radiator. It is printed on an FR-4 dielectric with an overall size of 38 × 45 × 1.6 mm3. Fundamental characteristics of the antenna in terms of return loss, Smith Chart, phase, radiation pattern, and antenna gain are investigated and good results are obtained. Simulations have been carried out using computer simulation technology (CST) software. A prototype of the antenna was fabricated and its characteristics were measured. The measured results show good agreement with simulations. The structure of the antenna is planar, simple to design and fabricate, easy to integrate with RF circuit, and suitable for use in RFID systems.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4752 ◽  
Author(s):  
Khwaja Mansoor ◽  
Anwar Ghani ◽  
Shehzad Chaudhry ◽  
Shahaboddin Shamshirband ◽  
Shahbaz Ghayyur ◽  
...  

Despite the many conveniences of Radio Frequency Identification (RFID) systems, the underlying open architecture for communication between the RFID devices may lead to various security threats. Recently, many solutions were proposed to secure RFID systems and many such systems are based on only lightweight primitives, including symmetric encryption, hash functions, and exclusive OR operation. Many solutions based on only lightweight primitives were proved insecure, whereas, due to resource-constrained nature of RFID devices, the public key-based cryptographic solutions are unenviable for RFID systems. Very recently, Gope and Hwang proposed an authentication protocol for RFID systems based on only lightweight primitives and claimed their protocol can withstand all known attacks. However, as per the analysis in this article, their protocol is infeasible and is vulnerable to collision, denial-of-service (DoS), and stolen verifier attacks. This article then presents an improved realistic and lightweight authentication protocol to ensure protection against known attacks. The security of the proposed protocol is formally analyzed using Burrows Abadi-Needham (BAN) logic and under the attack model of automated security verification tool ProVerif. Moreover, the security features are also well analyzed, although informally. The proposed protocol outperforms the competing protocols in terms of security.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Liling Sun ◽  
Maowei He ◽  
Jingtao Hu ◽  
Yunlong Zhu ◽  
Hanning Chen

A novel butterfly-shaped patch antenna for wireless communication is introduced in this paper. The antenna is designed for wideband wireless communications and radio-frequency identification (RFID) systems. Two symmetrical quasi-circular arms and two symmetrical round holes are incorporated into the patch of a microstrip antenna to expand its bandwidth. The diameter and position of the circular slots are optimized to achieve a wide bandwidth. The validity of the design concept is demonstrated by means of a prototype having a bandwidth of about 40.1%. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously most of the modern wireless communication standards.


Sign in / Sign up

Export Citation Format

Share Document