scholarly journals Time-Efficient Cloning Attacks Identification in Large-Scale RFID Systems

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ju-min Zhao ◽  
Ding Feng ◽  
Deng-ao Li ◽  
Wei Gong ◽  
Hao-xiang Liu ◽  
...  

Radio Frequency Identification (RFID) is an emerging technology for electronic labeling of objects for the purpose of automatically identifying, categorizing, locating, and tracking the objects. But in their current form RFID systems are susceptible to cloning attacks that seriously threaten RFID applications but are hard to prevent. Existing protocols aimed at detecting whether there are cloning attacks in single-reader RFID systems. In this paper, we investigate the cloning attacks identification in the multireader scenario and first propose a time-efficient protocol, called the time-efficient Cloning Attacks Identification Protocol (CAIP) to identify all cloned tags in multireaders RFID systems. We evaluate the performance of CAIP through extensive simulations. The results show that CAIP can identify all the cloned tags in large-scale RFID systems fairly fast with required accuracy.

2019 ◽  
Vol 8 (2) ◽  
pp. 10-17 ◽  
Author(s):  
E. Cetin ◽  
M. B. Sahin ◽  
O. Ergul

We present a numerical investigation of effective chipless tags for radio-frequency-identification (RFID) applications. Chipless tags have been introduced recently as alternatives to standard tags with microchips. While they can significantly reduce the overall cost of RFID systems by eliminating microchips and procedures to mount them on tags, chipless tags bring new challenges, especially in terms of identification reliability. We focus on tag structures that consist of resonators and consider alternative scenarios to find out potential misidentification cases. We also present the robustness of resonator-type elements in terms of fabrication errors, as well as array strategies to significantly increase electromagnetic responses of tags at the cost of reduced compactness.


Author(s):  
Yubao Hou ◽  
Hua Liang ◽  
Juan liu

In the traditional RFID (Radio Frequency IDentification) system, a secure wired channel communication is used between the reader and the server. The newly produced mobile RFID system is different from the traditional RFID system, the communication between the reader and the server is based on a wireless channel, and the authentication protocol is suitable for traditional RFID systems, but it cannot be used in mobile RFID systems. To solve this problem, a mutual authentication protocol MSB (Most Significant Bit) for super lightweight mobile radio frequency identification system is proposed based on bit replacement operation. MSB is a bitwise operation to encrypt information and reduce the computational load of communication entities. Label, readers, and servers authenticate first and then communicate, MSB may be used to resistant to common attacks. The security analysis of the protocol shows that the protocol has high security properties, the performance analysis of the protocol shows that the protocol has the characteristics of low computational complexity, the formal analysis of the protocol based on GNY logic Gong et al. (1990) provides a rigorous reasoning proof process for the protocol.


2021 ◽  
Vol 21 (4) ◽  
pp. 316-321
Author(s):  
Abdul Basit ◽  
Muhammad Irfan Khattak ◽  
Ayman Althuwayb ◽  
Jamel Nebhen

In this article, a simple method is developed to design a highly miniaturized tri-band bandpass filter (BPF) utilizing two asymmetric coupled resonators with one step discontinuity and one uniform impedance resonator (UIR) for worldwide interoperability for microwave access (WiMAX) and radio frequency identification (RFID) applications. The first and second passbands located at 3.7 GHz and 6.6 GHz are achieved through two asymmetric coupled step impedance resonators (SIRs), while the third passband, centered at 9 GHz, is achieved using a half-wavelength UIR, respectively. The fundamental frequencies of this BPF are implemented by tuning the physical length ratio (α) and impedance ratio (R) of the asymmetric SIRs. The proposed filter is designed and fabricated with a circuit dimension of 13.69 mm × 25 mm (0.02 λg × 0.03 λg), where λg represents the guided wavelength at the first passband. The experimental and measured results are provided with good matching.


2019 ◽  
Vol 24 (2) ◽  
pp. 142-155 ◽  
Author(s):  
Chengcheng Wang ◽  
Zhongzhi Xu ◽  
Ronghua Du ◽  
Haifeng Li ◽  
Pu Wang

2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877128 ◽  
Author(s):  
Jinkai Liu ◽  
Yanqing Qiu ◽  
Kezhao Yin ◽  
Wentong Dong ◽  
Jiaqing Luo

The radio frequency identification technology was given greater interest as it is widely used for identification and localization in the cognitive radio sensor networks. While radio frequency identification–based indoor localization is attractive, the need for a large-scale and high-density deployment of readers and reference tags is costly. Using mobile readers mounted on guide rails, we design and implement an RFID indoor localization system, which requires neither reference tags nor received signal strength indicator functions, for stock-taking and searching in warehouse operations. In particular, we install two guide rails, which can allow a reader to move horizontally or vertically, on the ceiling of a warehouse or workshop. We then propose a continuous scanning algorithm to improve the accuracy for locating a single tagged object and a category-based scheduling algorithm to shorten the time for locating multiple tagged objects. Our primary experimental results show that RFID indoor localization system can achieve high time efficiency and localization accuracy in the indoor localization.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhiyong He

Radio Frequency Identification (RFID) technology has been used in numerous applications, e.g., supply chain management and inventory control. This paper focuses on the practically important problem of the rapid estimation of the number of tags in large-scale RFID systems with multiple readers and multicategory RFID tags. RFID readers are often static and have to be deployed strategically after careful planning to cover the entire monitoring area, but reader-to-reader collision (R2Rc) remains a problem. R2Rc decreases the reliability of the estimation of the tag population size, because it results in the failure of communication between the reader and tags. In this paper, we propose a coloring graph-based estimation scheme (CGE), which is the first estimation framework designed for multireader and multicategory RFID systems to determine the distribution of tags in different categories. CGE allows for the use of any estimation protocol to determine the number of tags, prevents R2Rc, and results in higher time efficiency and less power-consumption than the classic scheduling method DCS.


2021 ◽  
Vol 11 (18) ◽  
pp. 8254
Author(s):  
Wei-Hao Su ◽  
Kai-Ying Chen ◽  
Louis Y. Y. Lu ◽  
Jen-Jen Wang

The study collected papers on radio frequency identification (RFID) applications from an academic database to explore the topic’s development trajectory and predict future development trends. Overall, 3820 papers were collected, and citation networks were established on the basis of the literature references. Main path analysis was performed on the networks to determine the development trajectory of RFID applications. After clustering into groups, the results are twenty clusters, and six clusters with citation counts of more than 200 were obtained. Cluster and word cloud analyses were conducted, and the main research themes were identified: RFID applications in supply chain management, antenna design, collision prevention protocols, privacy and safety, tag sensors, and localization systems. Text mining was performed on the titles and abstracts of the papers to identify frequent keywords and topics of interest to researchers. Finally, statistical analysis of papers published in the previous 4 years revealed RFID applications in construction, aquaculture, and experimentation are less frequently discussed themes. This study provides planning directions for industry, and the findings serve as a reference for business domain. The integrated analysis successfully determined the trajectory of RFID-based technological development and applications as well as forecast the direction of future research.


Sign in / Sign up

Export Citation Format

Share Document