5.8 GHz Portable Wireless Monitoring System for Sleep Apnea Diagnosis in Wireless Body Sensor Network (WBSN) Using Active RFID and MIMO Technology

Author(s):  
Yang Yang ◽  
Abdur Rahim ◽  
Nemai Chandra Karmakar

Sleep apnea is a severe, potentially life-threatening condition that requires immediate medical attention. In this chapter, a novel wireless sleep apnea monitoring system is proposed to avoid uncomfortable sleep in an unfamiliar sleep laboratory in traditional PSG-based wired monitoring systems. In wireless sleep apnea monitoring system, signal propagation paths may be affected by fading because of reflection, diffraction, energy absorption, shadowing by the body, body movement, and the surrounding environment. To combat the fading effect in WBSN, the MIMO technology is introduced in this chapter. In addition, the presented active RFID based system is composed of two main parts. The first is an on-body sensor system; the second is a reader and base station. In order to minimize the physical size of the on-body sensors and to avoid interference with 2.4 GHz wireless applications, the system is designed to operate in the 5.8 GHz ISM band. Each on-body sensor system consists of a physiological signal detection circuit, an analogue-to-digital convertor (ADC), a microcontroller (MCU), a transceiver, a channel selection bandpass filter (BPF), and a narrow band antenna.

Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 58 ◽  
Author(s):  
Qiancheng Liang ◽  
Lisheng Xu ◽  
Nan Bao ◽  
Lin Qi ◽  
Jingjing Shi ◽  
...  

With the rapid increase in the development of miniaturized sensors and embedded devices for vital signs monitoring, personal physiological signal monitoring devices are becoming popular. However, physiological monitoring devices which are worn on the body normally affect the daily activities of people. This problem can be avoided by using a non-contact measuring device like the Doppler radar system, which is more convenient, is private compared to video monitoring, infrared monitoring and other non-contact methods. Additionally real-time physiological monitoring with the Doppler radar system can also obtain signal changes caused by motion changes. As a result, the Doppler radar system not only obtains the information of respiratory and cardiac signals, but also obtains information about body movement. The relevant RF technology could eliminate some interference from body motion with a small amplitude. However, the motion recognition method can also be used to classify related body motion signals. In this paper, a vital sign and body movement monitoring system worked at 2.4 GHz was proposed. It can measure various physiological signs of the human body in a non-contact manner. The accuracy of the non-contact physiological signal monitoring system was analyzed. First, the working distance of the system was tested. Then, the algorithm of mining collective motion signal was classified, and the accuracy was 88%, which could be further improved in the system. In addition, the mean absolute error values of heart rate and respiratory rate were 0.8 beats/min and 3.5 beats/min, respectively, and the reliability of the system was verified by comparing the respiratory waveforms with the contact equipment at different distances.


2013 ◽  
Vol 753-755 ◽  
pp. 2369-2373
Author(s):  
Yu Xuan Hu ◽  
Yi Hu ◽  
Shu Ming Ye ◽  
Xiao Xiang Zheng

As a major indicator of Obstructive Sleep Apnea Syndrome (OSAS) in clinical diagnosis, the monitoring of sleep apnea plays an important role in medical treatments of modern society. This paper proposes a portable sleep apnea monitoring system, which is of high-precision and low-power consumption, and capable of performing the long-term monitoring of OSAS patients multiple physiological parameters in clinical treatments. In the system, the AC modulated detection is adopted, and low amplification ratios are utilized in forestage and a high-resolution AD converter is designed in post-stages. Thus, it is able to acquire, analyze, and process physiological signals in real-time. In addition, ultralow-power chips are used in control system to save the power consumption. The experimental results show that our monitoring system has the strengths of high stability, low-power consumption (peak current90mA), and strong anti-interference ability, which demonstrates the potential in practical applications.


2021 ◽  
Vol 69 (2) ◽  
pp. 2793-2806
Author(s):  
Xiaolong Yang ◽  
Xin Yu ◽  
Liangbo Xie ◽  
Hao Xue ◽  
Mu Zhou ◽  
...  

Author(s):  
Moon Chowdhury ◽  
Golap Kanti Dey ◽  
M. R. Karim

2017 ◽  
Vol 14 (3) ◽  
pp. 20161178-20161178 ◽  
Author(s):  
Long Chen ◽  
Xining Yang ◽  
Jianfeng Wu ◽  
Lingyan Fan

Sign in / Sign up

Export Citation Format

Share Document