A Portable and High-Resolution System for Sleep Apnea Monitoring

2013 ◽  
Vol 753-755 ◽  
pp. 2369-2373
Author(s):  
Yu Xuan Hu ◽  
Yi Hu ◽  
Shu Ming Ye ◽  
Xiao Xiang Zheng

As a major indicator of Obstructive Sleep Apnea Syndrome (OSAS) in clinical diagnosis, the monitoring of sleep apnea plays an important role in medical treatments of modern society. This paper proposes a portable sleep apnea monitoring system, which is of high-precision and low-power consumption, and capable of performing the long-term monitoring of OSAS patients multiple physiological parameters in clinical treatments. In the system, the AC modulated detection is adopted, and low amplification ratios are utilized in forestage and a high-resolution AD converter is designed in post-stages. Thus, it is able to acquire, analyze, and process physiological signals in real-time. In addition, ultralow-power chips are used in control system to save the power consumption. The experimental results show that our monitoring system has the strengths of high stability, low-power consumption (peak current90mA), and strong anti-interference ability, which demonstrates the potential in practical applications.

SLEEP ◽  
2009 ◽  
Vol 32 (5) ◽  
pp. 629-636 ◽  
Author(s):  
Rogerio Santos-Silva ◽  
Denis E. Sartori ◽  
Viviane Truksinas ◽  
Eveli Truksinas ◽  
Fabiana F. F. D Alonso ◽  
...  

2017 ◽  
Vol 14 (1) ◽  
pp. 277-283
Author(s):  
V Rajmohan ◽  
O. Uma Maheswari

In modern days of VLSI design, speedy operations and low-power consumption is a key requirement for any circuits. When it comes to multipliers, the power efficient multiplier plays an important role. The main aim of this work is to develop the system with faster and less power multiplier for an efficient process by using Baugh-Wooley multipliers. The optimized Baugh-Wooley multiplier consumes least power, area and produces less delay. The proposed architecture is 193× times faster than Conventional array multiplier in the practical applications and 213× times faster than a conventional Baugh-Wooley multiplier. The Improved Baugh-Wooley multiplier consumes the power of 09.02 mW and area of 52426 μm2.


2016 ◽  
Vol 4 (47) ◽  
pp. 11032-11049 ◽  
Author(s):  
Eiichi Kuramochi

This review summarizes recent advances in trapping and extracting light, cavity-QED studies, and low power consumption photonic devices by photonic crystals and nanostructures.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9681
Author(s):  
Akira Yoshioka ◽  
Akira Shimizu ◽  
Hiroyuki Oguma ◽  
Nao Kumada ◽  
Keita Fukasawa ◽  
...  

Although dragonflies are excellent environmental indicators for monitoring terrestrial water ecosystems, automatic monitoring techniques using digital tools are limited. We designed a novel camera trapping system with an original dragonfly detector based on the hypothesis that perching dragonflies can be automatically detected using inexpensive and energy-saving photosensors built in a perch-like structure. A trial version of the camera trap was developed and evaluated in a case study targeting red dragonflies (Sympetrum spp.) in Japan. During an approximately 2-month period, the detector successfully detected Sympetrum dragonflies while using extremely low power consumption (less than 5 mW). Furthermore, a short-term field experiment using time-lapse cameras for validation at three locations indicated that the detection accuracy was sufficient for practical applications. The frequency of false positive detection ranged from 17 to 51 over an approximately 2-day period. The detection sensitivities were 0.67 and 1.0 at two locations, where a time-lapse camera confirmed that Sympetrum dragonflies perched on the trap more than once. However, the correspondence between the detection frequency by the camera trap and the abundance of Sympetrum dragonflies determined by field observations conducted in parallel was low when the dragonfly density was relatively high. Despite the potential for improvements in our camera trap and its application to the quantitative monitoring of dragonflies, the low cost and low power consumption of the detector make it a promising tool.


2013 ◽  
Vol E96.C (11) ◽  
pp. 1367-1372 ◽  
Author(s):  
Akira SAKAIGAWA ◽  
Masaaki KABE ◽  
Tsutomu HARADA ◽  
Fumitaka GOTO ◽  
Naoyuki TAKASAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document