Fatigue Damage Prognostics and Life Prediction with Dynamic Response Reconstruction Using Indirect Sensor Measurements

Author(s):  
Jingjing He ◽  
Xuefei Guan ◽  
Yongming Liu

This study presents a general methodology for fatigue damage prognostics and life prediction integrating the structural health monitoring system. A new method for structure response reconstruction of critical locations using measurements from remote sensors is developed. The method is based on the empirical mode decomposition with intermittency criteria and transformation equations derived from finite element modeling. Dynamic responses measured from usage monitoring system or sensors at available locations are decomposed into modal responses directly in time domain. Transformation equations based on finite element modeling are used to extrapolate the modal responses from the measured locations to critical locations where direct sensor measurements are not available. The mode superposition method is employed to obtain dynamic responses at critical locations for fatigue crack propagation analysis. Fatigue analysis and life prediction can be performed given reconstructed responses at the critical location. The method is demonstrated using a multi degree-of-freedom cantilever beam problem.

2013 ◽  
Vol 37 (3) ◽  
pp. 621-629 ◽  
Author(s):  
Long Zhang ◽  
Keith A. Williams ◽  
Zhengchao Xie

Harvesting the electrical energy from their working environment has become a feasible choice of realizing self-powered systems or providing supplementary power sources to the battery. In this paper, a pre-loaded piezoelectric cantilever bimorph (PCB) energy harvester is adopted as the research object, for which a single degree-of-freedom analytical model and finite element modeling have been carried out to study its dynamic responses. The laboratory experiments have also been performed to validate the analytical and the finite element modeling. It shows that finite element modeling has a better agreement with the experimental results than the analytical model, while the latter has a rough accuracy and can be used to obtain quick estimations of the dynamic response of the PCB energy harvester in certain cases.


Author(s):  
Mohammad Masum Hossain ◽  
Dereje Agonafer ◽  
Puligandla Viswanadham ◽  
Tommi Reinikainen

The life-prediction modeling of an electronic package requires a sequence of critical assumptions concerning the finite element models. The solder structures accommodate the bulk of the plastic strain that is generated during accelerated temperature cycling due to the thermal expansion mismatch between the various materials that constitute the package. Finite element analysis is extensively used for simulating the effect of accelerated temperature cycling on electronic packages. There are a number of issues that need to be addressed to improve the current FEM models. One of the limitations inherent to the presently available models is the accuracy in property values of eutectic 63Sn/37Pb solder or other solder materials (i.e. 62Sn/36Pb/2Ag). Life prediction methodologies for high temperature solders (90Pb/10Sn, 95Pb/5Sn, etc.) or lead-free based inter-connects materials, are almost non-existent due to their low volume use or relative infancy. [1] Another major limitation for the models presently available is excluding the effect of intermetallic compound (Cu6Sn5, Cu3Sn) formation and growth between solder joint and Cu pad due to the reflow processes, rework and during the thermal aging. The mechanical reliability of these intermetallic compounds clearly influences the mechanical integrity of the interconnection. The brittle failures of solder balls have been identified with the growth of a number of intermetallic compounds both at the interfaces between metallic layers and in the bulk solder balls. In this paper, the effect of intermetallic compound in fatigue life prediction using finite element modeling is described. A Chip Scale Package 3D Quarter model is chosen to do the FE analysis. Accelerated temperature cycling is performed to obtain the plastic work due to thermal expansion mismatch between the various materials. Solder joint fatigue life prediction methodologies were incorporated so that finite element simulation results were translated into estimated cycles to failure. The results are compared with conventional models that do not include intermetallic effects. Conventionally available material properties are assumed for the eutectic 63Sn/37Pb solder and the intermetallic material properties. The importance of including intermetallic effect in finite element modeling will be discussed.


2010 ◽  
Vol 16 (5) ◽  
pp. 677-684
Author(s):  
Shunlong Li ◽  
Hui Li ◽  
Yang Liu ◽  
Zhiming Guo ◽  
Hongzhi Ding

1991 ◽  
Vol 3 (1) ◽  
pp. 235-253 ◽  
Author(s):  
L. D. Philipp ◽  
Q. H. Nguyen ◽  
D. D. Derkacht ◽  
D. J. Lynch ◽  
A. Mahmood

Sign in / Sign up

Export Citation Format

Share Document