Biomedical Robotics for Healthcare

Author(s):  
Kenoki Ohuchida ◽  
Makoto Hashizume

Recently, a robotic system was developed in the biomedical field to support minimally invasive surgery. The popularity of minimally invasive surgery has surged rapidly because of endoscopic procedures. In endoscopic surgery, surgical procedures are performed within a body cavity and visualized with laparoscopy or thoracoscopy. Since the initial laparoscopic cholecystectomy was performed in 1987, the implications for endoscopic procedures have continuously expanded, and endoscopic surgery is currently the standard for an increasing number of operations. Advances in laparoscopic surgery have led to less postoperative pain, shorter hospital stays, and an earlier return to work for many patients. However, performing laparoscopic procedures requires several skills that have never been required for conventional open surgery. The surgeon needs to coordinate his/her eyes and hands and acquire a skillful manner using long-shaft instruments as well as mentally interpret a two-dimensional environment as a three-dimensional one. Because learning such skills is stressful for most surgeons, performing a laparoscopic procedure is more physically and mentally demanding than performing an open procedure.

2020 ◽  
Vol 11 ◽  
Author(s):  
Chao Huang ◽  
Qizhuo Wang ◽  
Mingfu Zhao ◽  
Chunyan Chen ◽  
Sinuo Pan ◽  
...  

Minimally invasive surgery (MIS) has been the preferred surgery approach owing to its advantages over conventional open surgery. As a major limitation, the lack of tactile perception impairs the ability of surgeons in tissue distinction and maneuvers. Many studies have been reported on industrial robots to perceive various tactile information. However, only force data are widely used to restore part of the surgeon’s sense of touch in MIS. In recent years, inspired by image classification technologies in computer vision, tactile data are represented as images, where a tactile element is treated as an image pixel. Processing raw data or features extracted from tactile images with artificial intelligence (AI) methods, including clustering, support vector machine (SVM), and deep learning, has been proven as effective methods in industrial robotic tactile perception tasks. This holds great promise for utilizing more tactile information in MIS. This review aims to provide potential tactile perception methods for MIS by reviewing literatures on tactile sensing in MIS and literatures on industrial robotic tactile perception technologies, especially AI methods on tactile images.


2014 ◽  
Vol 5 ◽  
pp. MEI.S13342
Author(s):  
Francesca Destro ◽  
Noemi Cantone ◽  
Mario Lima

Minimally invasive surgery (MIS) is a relatively new surgery comprising various procedures performed with special miniaturized instruments and imaging reproduction systems. Technological advances have made MIS an efficient, safe, and applicable tool for pediatric surgeons with unquestionable advantages. The recent introduction of three-dimensional (3D) high definition systems has been advocated in order to overcome some of the problems related to standard MIS visual limitations. This short paper recapitulates the necessity to minimize MIS visualization limitations and reports the characteristics of new laparoscopic 3D systems.


Author(s):  
J Kang ◽  
K Y Lee

Minimally invasive surgery has become mainstream in surgical management of colorectal disease. Based on evidence of oncologic safety and benefit to patients, laparoscopic colorectal surgery is regarded as a successful alternative to open surgery. Since the introduction of the da Vinci® system as another tool for minimally invasive surgery, there have been several reports regarding the feasibility and safety of the system. The authors looked at their experience with 412 robotic colorectal surgeries and found that it was feasible and safe. Incidence of operation-related morbidity was around 11 per cent and system-related problems were 2.4 per cent. There was no operation-related or system-related mortality. From a technological perspective, robotic surgery has several advantages over laparoscopic surgery, including a magnifying view with a three-dimensional image, a stable camera platform, and instruments with Endowrist® technology that allow for seven degrees of freedom of movement. However, there is still room for improvement. The revolution of robotic technology can aid in the realization of a dream: a smaller, cheaper, and more sophisticated robotic system, which will further facilitate the widespread application of robotic surgery to colorectal disease.


2014 ◽  
Vol 533 ◽  
pp. 60-63
Author(s):  
Yi Zhong Wang ◽  
Xiao Qiang Zhao ◽  
Yong Hong Wu ◽  
Ting Wei Niu ◽  
Qiao Jun Liu ◽  
...  

In minimally invasive surgery, needle is one of the most common devices that used to conduct different diagnosis and treatment tasks. In this paper, coordinates of articulated needle while being steered are studied. After analyzing bending directions, a simplified model of articulated needle is established. Accordingly, formulas for calculating the coordinates of important points in an articulated needle are got in both two dimensional and three dimensional spaces. By providing a theoretical basis for the steering of an articulated needle, its navigation accuracy can be improved.


Spine ◽  
2017 ◽  
Vol 42 (10) ◽  
pp. 789-797 ◽  
Author(s):  
Nils Hansen-Algenstaedt ◽  
Mun Keong Kwan ◽  
Petra Algenstaedt ◽  
Chee Kidd Chiu ◽  
Lennart Viezens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document