Design of a Mobile Robot to Clean the External Walls of Oil Tanks

Author(s):  
Hernán Gonzalez Acuña ◽  
Alfonso René Quintero Lara ◽  
Ricardo Ortiz Guerrero ◽  
Jairo de Jesús Montes Alvarez ◽  
Hernando González Acevedo ◽  
...  

This chapter describes a Mechatronics Design methodology applied to the design of a mobile robot to climb vertical surfaces. The first part of this chapter reviews different ways to adhere to vertical surfaces and shows some examples developed by different research groups. The second part presents the stages of Mechatronics design methodology used in the design, including mechanical design, electronics design, and control design. These stages describe the most important topics for optimally successful design. The final part provides results that were obtained in the design process and construction of the robot. Finally, the conclusions of this research work are presented.

Robotics ◽  
2013 ◽  
pp. 743-753
Author(s):  
Hernán González Acuña ◽  
Alfonso René Quintero Lara ◽  
Ricardo Ortiz Guerrero ◽  
Jairo de Jesús Montes Alvarez ◽  
Hernando González Acevedo ◽  
...  

This chapter describes a Mechatronics Design methodology applied to the design of a mobile robot to climb vertical surfaces. The first part of this chapter reviews different ways to adhere to vertical surfaces and shows some examples developed by different research groups. The second part presents the stages of Mechatronics design methodology used in the design, including mechanical design, electronics design, and control design. These stages describe the most important topics for optimally successful design. The final part provides results that were obtained in the design process and construction of the robot. Finally, the conclusions of this research work are presented.


Robotica ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. 515-532 ◽  
Author(s):  
Adam Y. Le ◽  
James K. Mills ◽  
Beno Benhabib

SUMMARYA novel rigid-body control design methodology for 6-degree-of-freedom (dof) parallel kinematic mechanisms (PKMs) is proposed. The synchronous control of PKM joints is addressed through a novel formulation of contour and lag errors. Robust performance as a control specification is addressed. A convex combination controller design approach is applied to address the problem of simultaneously satisfying multiple closed-loop specifications. The applied dynamic modeling approach allows the design methodology to be extended to 6-dof spatial PKMs. The methodology is applied to the design of a 6-dof PKM-based meso-milling machine tool and simulations are conducted.


2009 ◽  
Vol 147-149 ◽  
pp. 61-66 ◽  
Author(s):  
Marek Stania ◽  
Ralf Stetter

This paper presents the patented mechanical concept for steering and level control of a mobile robot equipped with four driving units and the methods that lead to the development of this mechatronic system. The mobile robot exhibits excellent maneuverability and considerable advantages when moving in difficult environments such as rough landscapes. The paper discusses a refined approach to develop mechatronic systems which is based on the well-known V-model. The refined approach allows a conscious planning and control of a mechatronic design process.


1995 ◽  
Vol 28 (14) ◽  
pp. 367-371
Author(s):  
S. Narayanan ◽  
W.P. Dayawansa

2018 ◽  
Vol 15 (04) ◽  
pp. 1850017
Author(s):  
Guoli Song ◽  
Che Hou ◽  
Yiwen Zhao ◽  
Xingang Zhao ◽  
Jianda Han

Design of the hollow modular joint plays an important role in modern robot layout, fixation, and wiring. In this paper, a hollow modular joint that meets the requirement of a minimally invasive surgical robot is proposed. The mechanical and control design is sequentially illustrated, and the torque sensor and its optimization are provided. Furthermore, a free-force control method is introduced. To analyze the designed module, the simulation of the redundant robot, comprised of the designed joint in seven degrees of freedom, is presented. The results of analyses showed that the designed hollow modular joint is valid and effective.


Author(s):  
Shannon Ridgeway ◽  
Carl D. Crane ◽  
Phillip Adsit ◽  
Roy Harrell

Abstract The suitability of the parallel planar actuator (PPA) to application in an articulated mobile robot is evaluated. Examination of several joint actuation schemes is presented along with the introduction of the PPA. The PPA has a high joint torque generating capacity and a distributed structure that leads to a light, stiff mechanism. A segment of an articulated mobile robot with the kinematic configuration of the PPA has been designed and fabricated. The design process is outlined and the major components are described. The mechanism is operational and meets major design criteria.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 5 ◽  
Author(s):  
Carmine Pappalardo ◽  
Domenico Guida

In this research work, a new method for solving forward and inverse dynamic problems of mechanical systems having an underactuated structure and subjected to holonomic and/or nonholonomic constraints is developed. The method devised in this paper is based on the combination of the Udwadia-Kalaba Equations with the Underactuation Equivalence Principle. First, an analytical method based on the Udwadia-Kalaba Equations is employed in the paper for handling dynamic and control problems of nonlinear nonholonomic mechanical systems in the same computational framework. Subsequently, the Underactuation Equivalence Principle is used for extending the capabilities of the Udwadia-Kalaba Equations from fully actuated mechanical systems to underactuated mechanical systems. The Underactuation Equivalence Principle represents an efficient method recently developed in the field of classical mechanics. The Underactuation Equivalence Principle is used in this paper for mathematically formalizing the underactuation property of a mechanical system considering a particular set of nonholonomic algebraic constraints defined at the acceleration level. On the other hand, in this study, the Udwadia-Kalaba Equations are analytically reformulated in a mathematical form suitable for treating inverse dynamic problems. By doing so, the Udwadia-Kalaba Equations are employed in conjunction with the Underactuation Equivalence Principle for developing a nonlinear control method based on an inverse dynamic approach. As shown in detail in this investigation, the proposed method can be used for analytically solving in an explicit manner the forward and inverse dynamic problems of several nonholonomic mechanical systems. In particular, the tracking control of the unicycle-like mobile robot is considered in this investigation as a benchmark example. Numerical experiments on the dynamic model of the unicycle-like mobile robot confirm the effectiveness of the nonlinear dynamic and control approaches developed in this work.


Sign in / Sign up

Export Citation Format

Share Document