Investigating the Performance of the TSS Scheme in Noisy MANETs

2013 ◽  
pp. 1038-1058
Author(s):  
Hussein Al-Bahadili ◽  
Shakir M. Hussain ◽  
Ghassan F. Issa ◽  
Khaled El-Zayyat

A Mobile Ad Hoc Network (MANET) suffers from high packet-loss due to various transmission impairments, such as: wireless signal attenuation, free space loss, thermal noise, atmospheric absorption, multipath effect, and refraction. All of these impairments are represented by a generic name, noise, and therefore such a network is referred to as a noisy network. For modeling and simulation purposes, the noisy environment is described by introducing a probability function, namely, the probability of reception (pc), which is defined as the probability that transmitted data is successfully delivered to its destination despite the presence of noise. This chapter describes the implementation and investigates the performance of the Threshold Secret Sharing (TSS) node authentication scheme in noisy MANETs. A number of simulations are performed using the MANET Simulator (MANSim) to estimate the authentication success ratio for various threshold secret shares, number of nodes, node speeds, and noise-levels. Simulation results demonstrate that, for a certain threshold secret share, the presence of noise inflicts a significant reduction in the authentication success ratio, while node mobility inflicts no or an insignificant effect. The outcomes of these simulations are important to facilitate efficient network management.

Author(s):  
Hussein Al-Bahadili ◽  
Shakir M. Hussain ◽  
Ghassan F. Issa ◽  
Khaled El-Zayyat

A Mobile Ad Hoc Network (MANET) suffers from high packet-loss due to various transmission impairments, such as: wireless signal attenuation, free space loss, thermal noise, atmospheric absorption, multipath effect, and refraction. All of these impairments are represented by a generic name, noise, and therefore such a network is referred to as a noisy network. For modeling and simulation purposes, the noisy environment is described by introducing a probability function, namely, the probability of reception (pc), which is defined as the probability that transmitted data is successfully delivered to its destination despite the presence of noise. This chapter describes the implementation and investigates the performance of the Threshold Secret Sharing (TSS) node authentication scheme in noisy MANETs. A number of simulations are performed using the MANET Simulator (MANSim) to estimate the authentication success ratio for various threshold secret shares, number of nodes, node speeds, and noise-levels. Simulation results demonstrate that, for a certain threshold secret share, the presence of noise inflicts a significant reduction in the authentication success ratio, while node mobility inflicts no or an insignificant effect. The outcomes of these simulations are important to facilitate efficient network management.


Author(s):  
Aarti Sahu ◽  
Laxmi Shrivastava

A wireless ad hoc network is a decentralized kind of wireless network. It is a kind of temporary Computer-to-Computer connection. It is a spontaneous network which includes mobile ad-hoc network (MANET), vehicular ad-hoc network (VANET) and Flying ad-hoc network (FANET). Mobile Ad Hoc Network (MANET) is a temporary network that can be dynamically formed to exchange information by wireless nodes or routers which may be mobile. A VANET is a sub form of MANET. It is an technology that uses vehicles as nodes in a network to make a mobile network. FANET is an ad-hoc network of flying nodes. They can fly independently or can be operated distantly. In this research paper Fuzzy based control approaches in wireless network detects & avoids congestion by developing the ad-hoc fuzzy rules as well as membership functions.In this concept, two parameters have been used as: a) Channel load b) The size of queue within intermediate nodes. These parameters constitute the input to Fuzzy logic controller. The output of Fuzzy logic control (sending rate) derives from the conjunction with Fuzzy Rules Base. The parameter used input channel load, queue length which are produce the sending rate output in fuzzy logic. This fuzzy value has been used to compare the MANET, FANET and VANET in terms of the parameters Throughput, packet loss ratio, end to end delay. The simulation results reveal that usage of Qual Net 6.1 simulator has reduced packet-loss in MANET with comparing of VANET and FANET.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xibin Zhao ◽  
Zhiyang You ◽  
Hai Wan

Mobile ad hoc network (MANET) is a dynamic wireless communication network. Because of the dynamic and infrastructureless characteristics, MANET is vulnerable in reliability. This paper presents a novel reliability analysis for MANET. The node mobility effect and the node reliability based on a real MANET platform are modeled and analyzed. An effective Monte Carlo method for reliability analysis is proposed. A detailed evaluation is performed in terms of the experiment results.


2015 ◽  
Vol 62 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Rezvi Shahariar ◽  
Abu Naser

In mobile ad hoc network communication is performed usually by using only send and receive messages and every node is powered by limited energy from low capacity battery. Every send or receive message takes particular amount of energy from the node. So node’s total energy level gradually decreases each time while it is sending or receiving something. In this way node will die out and packets coming from the source will be dropped since one of the routing node on the current route is no longer functioning. These packet loss events are observed and minimized in this paper. In the proposed approach, when source receives Warning Message from any routing node on the ongoing route then it will stop sending packets on the ongoing route. Critical energy level of routing node has been defined to generate a Warning Message when routing node’s energy level reduces to critical energy level. DOI: http://dx.doi.org/10.3329/dujs.v62i2.21979 Dhaka Univ. J. Sci. 62(2): 141-145, 2014 (July)


Author(s):  
DWEEPNA GARG ◽  
PARTH GOHIL

A Mobile Ad-Hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using centralized access points, infrastructure, or centralized administration. Routing means the act of moving information across an internet work from a source to a destination. The biggest challenge in this kind of networks is to find a path between the communication end points, what is aggravated through the node mobility. In this paper we present a new routing algorithm for mobile, multi-hop ad-hoc networks. The protocol is based on swarm intelligence. Ant colony algorithms are a subset of swarm intelligence and consider the ability of simple ants to solve complex problems by cooperation. The introduced routing protocol is well adaptive, efficient and scalable. The main goal in the design of the protocol is to reduce the overhead for routing. We refer to the protocol as the Ant Colony Optimization Routing (ACOR).


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Miguel O. Martínez-Rach ◽  
Pablo Piñol ◽  
Otoniel M. López ◽  
Manuel Perez Malumbres ◽  
José Oliver ◽  
...  

When comparing the performance of video coding approaches, evaluating different commercial video encoders, or measuring the perceived video quality in a wireless environment, Rate/distortion analysis is commonly used, where distortion is usually measured in terms of PSNR values. However, PSNR does not always capture the distortion perceived by a human being. As a consequence, significant efforts have focused on defining an objective video quality metric that is able to assess quality in the same way as a human does. We perform a study of some available objective quality assessment metrics in order to evaluate their behavior in two different scenarios. First, we deal with video sequences compressed by different encoders at different bitrates in order to properly measure the video quality degradation associated with the encoding system. In addition, we evaluate the behavior of the quality metrics when measuring video distortions produced by packet losses in mobile ad hoc network scenarios with variable degrees of network congestion and node mobility. Our purpose is to determine if the analyzed metrics can replace the PSNR while comparing, designing, and evaluating video codec proposals, and, in particular, under video delivery scenarios characterized by bursty and frequent packet losses, such as wireless multihop environments.


A mobile ad-hoc network (MANET) is an infrastructure-less network of wireless nodes. The network topology may change quickly with respect to time, due to node mobility. The network is a disintegrated network, activities such as delivering messages by determining the topology essential to be implemented by the nodes themselves i.e., the routing activity will be unified into mobile nodes. Due to the lack of centralized administration in multihop routing and open environment, MANET’s are susceptible to attacks by compromised nodes; hence, to provide security also energy efficiency is a crucial issue. So as to decrease the hazards of malicious nodes and resolve energy consumption issues, a simple confidence-based protocol is built to evaluate neighbor’s behaviour using forwarding factors. The reactive Ad-hoc on-demand multipath distance vector routing protocol (AOMDV), is extended and confidence-based Ad-hoc on-demand distance vector (CBAOMDV) protocol, is implemented for MANET. This implemented protocol is able to find multiple routes in one route discovery. These routes are calculated by confidence values and hop counts. From there, the shortest path is selected which fulfills the requirements of data packets for reliability on confidence. Several experimentations have been directed to relate AOMDV and CBAOMDV protocols and the outcomes show that CBAOMDV advances throughput, packet delivery ratio, normalized routing load, and average energy consumption.


Sign in / Sign up

Export Citation Format

Share Document