Privacy Protection in Vehicular Ad-Hoc Networks

Author(s):  
Gongjun Yan ◽  
Danda B. Rawat ◽  
Bhed Bahadur Bista ◽  
Wu He ◽  
Awny Alnusair

The first main contribution of this chapter is to take a non-trivial step towards providing a robust and scalable solution to privacy protection in vehicular networks. To promote scalability and robustness the authors employ two strategies. First, they view vehicular networks as consisting of non-overlapping subnetworks, each local to a geographic area referred to as a cell. Each cell has a server that maintains a list of pseudonyms that are valid for use in the cell. Each pseudonym has two components: the cell’s ID and a random number as host ID. Instead of issuing pseudonyms to vehicles proactively (as virtually all existing schemes do) the authors issue pseudonyms only to those vehicles that request them. This strategy is suggested by the fact that, in a typical scenario, only a fraction of the vehicles in an area will engage in communication with other vehicles and/or with the infrastructure and, therefore, do not need pseudonyms. The second main contribution is to model analytically the time-varying request for pseudonyms in a given cell. This is important for capacity planning purposes since it allows system managers to predict, by taking into account the time-varying attributes of the traffic, the probability that a given number of pseudonyms will be required at a certain time as well as the expected number of pseudonyms in use in a cell at a certain time. Empirical results obtained by detailed simulation confirm the accuracy of the authors’ analytical predictions.

Author(s):  
Gongjun Yan ◽  
Danda B. Rawat ◽  
Bhed Bahadur Bista ◽  
Wu He ◽  
Awny Alnusair

The first main contribution of this chapter is to take a non-trivial step towards providing a robust and scalable solution to privacy protection in vehicular networks. To promote scalability and robustness the authors employ two strategies. First, they view vehicular networks as consisting of non-overlapping subnetworks, each local to a geographic area referred to as a cell. Each cell has a server that maintains a list of pseudonyms that are valid for use in the cell. Each pseudonym has two components: the cell's ID and a random number as host ID. Instead of issuing pseudonyms to vehicles proactively (as virtually all existing schemes do) the authors issue pseudonyms only to those vehicles that request them. This strategy is suggested by the fact that, in a typical scenario, only a fraction of the vehicles in an area will engage in communication with other vehicles and/or with the infrastructure and, therefore, do not need pseudonyms. The second main contribution is to model analytically the time-varying request for pseudonyms in a given cell. This is important for capacity planning purposes since it allows system managers to predict, by taking into account the time-varying attributes of the traffic, the probability that a given number of pseudonyms will be required at a certain time as well as the expected number of pseudonyms in use in a cell at a certain time. Empirical results obtained by detailed simulation confirm the accuracy of the authors' analytical predictions.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3622 ◽  
Author(s):  
Jin-Woo Kim ◽  
Jae-Wan Kim ◽  
Dong-Keun Jeon

Vehicular ad hoc networks (VANETs) provide information and entertainment to drivers for safe and enjoyable driving. Wireless Access in Vehicular Environments (WAVE) is designed for VANETs to provide services efficiently. In particular, infotainment services are crucial to leverage market penetration and deployment costs of the WAVE standard. However, a low presence of infrastructure results in a shadow zone on the road and a link disconnection. The link disconnection is an obstacle to providing safety and infotainment services and becomes an obstacle to the deployment of the WAVE standard. In this paper, we propose a cooperative communication protocol to reduce performance degradation due to frequent link disconnection in the road environment. The proposed protocol provides contention-free data delivery by the coordination of roadside units (RSUs) and can provide the network QoS. The proposed protocol is shown to enhance throughput and delay through the simulation.


Author(s):  
Ren Junn Hwang ◽  
Yu Kai Hsiao ◽  
Cheng Yang Hwang

Author(s):  
Kayhan Zrar Ghafoor ◽  
Marwan Aziz Mohammed ◽  
Kamalrulnizam Abu Bakar ◽  
Ali Safa Sadiq ◽  
Jaime Lloret

Recently, Vehicular Ad Hoc Networks (VANET) have attracted the attention of research communities, leading car manufacturers, and governments due to their potential applications and specific characteristics. Their research outcome was started with awareness between vehicles for collision avoidance and Internet access and then expanded to vehicular multimedia communications. Moreover, vehicles’ high computation, communication, and storage resources set a ground for vehicular networks to deploy these applications in the near future. Nevertheless, on-board resources in vehicles are mostly underutilized. Vehicular Cloud Computing (VCC) is developed to utilize the VANET resources efficiently and provide subscribers safe infotainment services. In this chapter, the authors perform a survey of state-of-the-art vehicular cloud computing as well as the existing techniques that utilize cloud computing for performance improvements in VANET. The authors then classify the VCC based on the applications, service types, and vehicular cloud organization. They present the detail for each VCC application and formation. Lastly, the authors discuss the open issues and research directions related to VANET cloud computing.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Linsheng Ye ◽  
Linghe Kong ◽  
Kayhan Zrar Ghafoor ◽  
Guihai Chen ◽  
Shahid Mumtaz

The Industrial Internet of Things (IIoT) is the use of Internet of Things (IoT) technologies in manufacturing. The vehicular ad hoc networks (VANETs) are a typical application of IIoT. Benefiting from Dedicated Short-Range Communication (DSRC) technology, vehicles can communicate with each other through wireless manner. Therefore, road safety is able to be greatly improved by the broadcast of safety messages, which contain vehicle’s real-time speed, position, direction, etc. In existing DSRC, safety messages are broadcasted at a fixed frequency by default. However, traffic conditions are dynamic. In this way, there are too many transmission collisions when vehicles are too dense and the wireless channel is underused when vehicles are too sparse. In this paper, we address broadcast congestion issue in DSRC and propose lightweight adaptive broadcast (LAB) control for DSRC safety message. The objectives of LAB are to make full use of DSRC channel and avoid congestion. LAB meets two key challenges. First, it is hard to adopt a centralized method to control the communication parameters of distributed vehicles. Furthermore, the vehicle cannot easily acquire the channel conditions of other vehicles. To overcome these challenges, channel condition is attached with safety messages in LAB and broadcast frequency is adapted according to neighboring vehicles’ channel conditions. To evaluate the performance of LAB, we conduct extensive simulations on different roads and different vehicle densities. Performance results demonstrate that LAB effectively adjusts the broadcast frequency and controls the congestion.


2012 ◽  
Vol 8 (2) ◽  
pp. 153-172 ◽  
Author(s):  
Hajar Mousannif ◽  
Ismail Khalil ◽  
Stephan Olariu

The past decade has witnessed the emergence of Vehicular Ad-hoc Networks (VANET), specializing from the well-known Mobile Ad Hoc Networks (MANET) to Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communications. While the original motivation for Vehicular Networks was to promote traffic safety, recently it has become increasingly obvious that Vehicular Networks open new vistas for Internet access, providing weather or road condition, parking availability, distributed gaming, and advertisement. In previous papers [27,28], we introduced Cooperation as a Service (CaaS); a new service-oriented solution which enables improved and new services for the road users and an optimized use of the road network through vehicle's cooperation and vehicle-to-vehicle communications. The current paper is an extension of the first ones; it describes an improved version of CaaS and provides its full implementation details and simulation results. CaaS structures the network into clusters, and uses Content Based Routing (CBR) for intra-cluster communications and DTN (Delay–and disruption-Tolerant Network) routing for inter-cluster communications. To show the feasibility of our approach, we implemented and tested CaaS using Opnet modeler software package. Simulation results prove the correctness of our protocol and indicate that CaaS achieves higher performance as compared to an Epidemic approach.


Information ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 163 ◽  
Author(s):  
Gonçalo Pessoa ◽  
Lucas Guardalben ◽  
Miguel Luís ◽  
Carlos Senna ◽  
Susana Sargento

The main drivers for the continuous development of Vehicular ad-hoc Networks (VANETs) are safety applications and services. However, in recent years, new interests have emerged regarding the introduction of new applications and services for non-urgent content (e.g., videos, ads, sensing and touristic information) dissemination. However, there is a lack of real studies considering content dissemination strategies to understand when and to whom the content should be disseminated using real vehicular traces gathered from real vehicular networks. This work presents a realistic study of strategies for dissemination of non-urgent content with the main goal of improving content delivery as well as minimizing network congestion and resource usage. First, we perform an exhaustive network characterization. Then, several content strategies are specified and evaluated in different scenarios (city center and parking lot). All the obtained results show that there are two content distribution strategies that clearly set themselves apart due to their superior performance: Local Rarest Bundle First and Local Rarest Generation First.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3788 ◽  
Author(s):  
Lionel Nkenyereye ◽  
Lewis Nkenyereye ◽  
S. M. Riazul Islam ◽  
Yoon-Ho Choi ◽  
Muhammad Bilal ◽  
...  

There is a strong devotion in the automotive industry to be part of a wider progression towards the Fifth Generation (5G) era. In-vehicle integration costs between cellular and vehicle-to-vehicle networks using Dedicated Short Range Communication could be avoided by adopting Cellular Vehicle-to-Everything (C-V2X) technology with the possibility to re-use the existing mobile network infrastructure. More and more, with the emergence of Software Defined Networks, the flexibility and the programmability of the network have not only impacted the design of new vehicular network architectures but also the implementation of V2X services in future intelligent transportation systems. In this paper, we define the concepts that help evaluate software-defined-based vehicular network systems in the literature based on their modeling and implementation schemes. We first overview the current studies available in the literature on C-V2X technology in support of V2X applications. We then present the different architectures and their underlying system models for LTE-V2X communications. We later describe the key ideas of software-defined networks and their concepts for V2X services. Lastly, we provide a comparative analysis of existing SDN-based vehicular network system grouped according to their modeling and simulation concepts. We provide a discussion and highlight vehicular ad-hoc networks’ challenges handled by SDN-based vehicular networks.


2015 ◽  
pp. 1049-1061 ◽  
Author(s):  
Kayhan Zrar Ghafoor ◽  
Marwan Aziz Mohammed ◽  
Kamalrulnizam Abu Bakar ◽  
Ali Safa Sadiq ◽  
Jaime Lloret

Recently, Vehicular Ad Hoc Networks (VANET) have attracted the attention of research communities, leading car manufacturers, and governments due to their potential applications and specific characteristics. Their research outcome was started with awareness between vehicles for collision avoidance and Internet access and then expanded to vehicular multimedia communications. Moreover, vehicles' high computation, communication, and storage resources set a ground for vehicular networks to deploy these applications in the near future. Nevertheless, on-board resources in vehicles are mostly underutilized. Vehicular Cloud Computing (VCC) is developed to utilize the VANET resources efficiently and provide subscribers safe infotainment services. In this chapter, the authors perform a survey of state-of-the-art vehicular cloud computing as well as the existing techniques that utilize cloud computing for performance improvements in VANET. The authors then classify the VCC based on the applications, service types, and vehicular cloud organization. They present the detail for each VCC application and formation. Lastly, the authors discuss the open issues and research directions related to VANET cloud computing.


Sign in / Sign up

Export Citation Format

Share Document