scholarly journals Cooperation as a Service in VANET: Implementation and Simulation Results

2012 ◽  
Vol 8 (2) ◽  
pp. 153-172 ◽  
Author(s):  
Hajar Mousannif ◽  
Ismail Khalil ◽  
Stephan Olariu

The past decade has witnessed the emergence of Vehicular Ad-hoc Networks (VANET), specializing from the well-known Mobile Ad Hoc Networks (MANET) to Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communications. While the original motivation for Vehicular Networks was to promote traffic safety, recently it has become increasingly obvious that Vehicular Networks open new vistas for Internet access, providing weather or road condition, parking availability, distributed gaming, and advertisement. In previous papers [27,28], we introduced Cooperation as a Service (CaaS); a new service-oriented solution which enables improved and new services for the road users and an optimized use of the road network through vehicle's cooperation and vehicle-to-vehicle communications. The current paper is an extension of the first ones; it describes an improved version of CaaS and provides its full implementation details and simulation results. CaaS structures the network into clusters, and uses Content Based Routing (CBR) for intra-cluster communications and DTN (Delay–and disruption-Tolerant Network) routing for inter-cluster communications. To show the feasibility of our approach, we implemented and tested CaaS using Opnet modeler software package. Simulation results prove the correctness of our protocol and indicate that CaaS achieves higher performance as compared to an Epidemic approach.

2018 ◽  
Vol 7 (2.4) ◽  
pp. 204
Author(s):  
Sukhpreet Kaur ◽  
Er Sharad

The vehicular adhoc network is the decentralized type of network in which vehicles can move from one location to another. In the network two type of communication is possible which are vehicle to vehicle and vehicle to infrastructure. In the vehicle to vehicle type of path establishment is the major issue of the network. In this research work, multicasting routing technique is proposed for the path establishment from source to destination. The proposed technique is implemented in NS2 and simulation results shows improvement in network delay for path establishment  


Author(s):  
Muhammad A. Javed ◽  
Jamil Y. Khan

Vehicular ad hoc networks (VANETs) are expected to be used for the dissemination of emergency warning messages on the roads. The emergency warning messages such as post crash warning notification would require an efficient multi hop broadcast scheme to notify all the vehicles within a particular area about the emergency. Such emergency warning applications have low delay and transmission overhead requirements to effectively transmit the emergency notification. In this paper, an adaptive distance based backoff scheme is presented for efficient dissemination of warning messages on the road. The proposed scheme adaptively selects the furthest vehicle as the next forwarder of the emergency message based on channel conditions. The detailed performance figures of the protocol are presented in the paper using simulations in the OPNET network simulator. The proposed protocol introduces lower packet delay and broadcast overhead as compared to standard packet broadcasting protocols for vehicular networks.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3622 ◽  
Author(s):  
Jin-Woo Kim ◽  
Jae-Wan Kim ◽  
Dong-Keun Jeon

Vehicular ad hoc networks (VANETs) provide information and entertainment to drivers for safe and enjoyable driving. Wireless Access in Vehicular Environments (WAVE) is designed for VANETs to provide services efficiently. In particular, infotainment services are crucial to leverage market penetration and deployment costs of the WAVE standard. However, a low presence of infrastructure results in a shadow zone on the road and a link disconnection. The link disconnection is an obstacle to providing safety and infotainment services and becomes an obstacle to the deployment of the WAVE standard. In this paper, we propose a cooperative communication protocol to reduce performance degradation due to frequent link disconnection in the road environment. The proposed protocol provides contention-free data delivery by the coordination of roadside units (RSUs) and can provide the network QoS. The proposed protocol is shown to enhance throughput and delay through the simulation.


Author(s):  
Mekelleche Fatiha ◽  
Haffaf Hafid

Vehicular Ad-Hoc Networks (VANETs), a new mobile ad-hoc network technology (MANET), are currently receiving increased attention from manufacturers and researchers. They consist of several mobile vehicles (intelligent vehicles) that can communicate with each other (inter-vehicle communication) or with fixed road equipment (vehicle-infrastructure communication) adopting new wireless communication technologies. The objective of these networks is to improve road safety by warning motorists of any event on the road (accidents, hazards, possible deviations, etc.), and make the time spent on the road more pleasant and less boring (applications deployed to ensure the comfort of the passengers). Practically, VANETs are designed to support the development of Intelligent Transportation Systems (ITS). The latter are seen as one of the technical solutions to transport challenges. This chapter, given the importance of road safety in the majority of developed countries, presents a comprehensive study on the VANET networks, highlighting their main features.


2017 ◽  
Vol 63 (3) ◽  
pp. 309-313 ◽  
Author(s):  
C. Suganthi Evangeline ◽  
S. Appu

Abstract A special type of Mobile Ad-hoc Networks (MANETs) which has frequent changes of topology and higher mobility is known as Vehicular Ad-hoc Networks (VANETs). In order to divide the network into groups of mobile vehicles and improve routing, data gathering, clustering is applied in VANETs. A stable clustering scheme based on adaptive multiple metric combining both the features of static and dynamic clustering methods is proposed in this work. Based on a new multiple metric method, a cluster head is selected among the cluster members which is taken from the mobility metrics such as position and time to leave the road segment, relative speed and Quality of Service metrics which includes neighborhood degree, link quality of the RSU and bandwidth. A higher QoS and cluster stability are achieved through the adaptive multiple metric. The results are simulated using NS2 and shows that this technique provides more stable cluster structured with the other methods.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Kaan Bür ◽  
Maria Kihl

Just as wireless communications develop further to achieve higher performance, new application areas emerge to challenge the limits. Vehicular ad hoc networks are one of these areas, and emergency situation warning is one of their most popular applications since traffic safety is a concern for everyone. Due to the life-critical nature of emergency applications, however, it is extremely important to ensure the solutions proposed meet the standards required, such as reliable and timely delivery of the safety warning in a situation like car collision avoidance. In order to put the candidate solutions to the test and evaluate their feasibility, we adopt the approach of computer simulation. We implement four different selective broadcast algorithms used for information dissemination in vehicular ad hoc networks, and compare their performance under identical realistic simulation conditions. Our goal is to provide an evaluation focussing on the performance with respect to safety, rather than to network aspects like throughput, loss, and delay. We define four new performance criteria to address the effectiveness, efficiency, timeliness, and overhead of the broadcast algorithms in safety warning delivery. The results we obtain using these criteria help us to understand better the design requirements of a high-performance selective broadcast algorithm.


Sign in / Sign up

Export Citation Format

Share Document