Trust Management in Mobile Cloud Computing

Cloud computing provides various computing resources delivered as a service over a network, particularly the Internet. With the rapid development of mobile networking and computing, as well as other enabling technologies, cloud computing is extended into the mobile domain. Mobile cloud computing concerns the usage of cloud computing in combination with mobile devices and mobile networks, in which trust management plays an important role to establish trust relationships in order to offer trustworthy services. This chapter briefly introduces trust management technologies in cloud computing. The authors analyze the basic requirements of trust management in mobile cloud computing by introducing its architecture and distinct characteristics. They further propose a number of schemes in order to realize autonomic data access control based on trust evaluation in a mobile cloud computing environment. Furthermore, the authors discuss unsolved issues and future research challenges in the field of trust management in mobile cloud computing.

2014 ◽  
Vol 2014 ◽  
pp. 1-27 ◽  
Author(s):  
Suleman Khan ◽  
Muhammad Shiraz ◽  
Ainuddin Wahid Abdul Wahab ◽  
Abdullah Gani ◽  
Qi Han ◽  
...  

Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xin Zheng ◽  
Yu Nan ◽  
Fangsu Wang ◽  
Ruiqing Song ◽  
Gang Zheng ◽  
...  

Considering the widespread use of mobile devices and the increased performance requirements of mobile users, shifting the complex computing and storage requirements of mobile terminals to the cloud is an effective way to solve the limitation of mobile terminals, which has led to the rapid development of mobile cloud computing. How to reduce and balance the energy consumption of mobile terminals and clouds in data transmission, as well as improve energy efficiency and user experience, is one of the problems that green cloud computing needs to solve. This paper focuses on energy optimization in the data transmission process of mobile cloud computing. Considering that the data generation rate is variable, because of the instability of the wireless connection, combined with the transmission delay requirement, a strategy based on the optimal stopping theory to minimize the average transmission energy of the unit data is proposed. By constructing a data transmission queue model with multiple applications, an admission rule that is superior to the top candidates is proposed by using secretary problem of selecting candidates with the lowest average absolute ranking. Then, it is proved that the rule has the best candidate. Finally, experimental results show that the proposed optimization strategy has lower average energy per unit of data, higher energy efficiency, and better average scheduling period.


Author(s):  
A. Amali Mary Bastina ◽  
N. Rama

<div><p>The raise in the recent security incidents of cloud computing and its challenges is to secure the data. To solve this problem, the integration of mobile with cloud computing, Mobile biometric authentication in cloud computing is presented in this paper. To enhance the security, the biometric authentication is being used, since the Mobile cloud computing is popular among the mobile user. This paper examines how the mobile cloud computing (MCC) is used in security issue with finger biometric authentication model. Through this fingerprint biometric, the secret code is generated by entropy value. This enables the person to request for accessing the data in the desk computer. When the person requests the access to the authorized user through Bluetooth in mobile, the Authorized user sends the permit access through fingerprint secret code. Finally this fingerprint is verified with the database in the Desk computer. If it is matched, then the computer can be accessed by the requested person.</p></div>


2019 ◽  
pp. 1108-1123
Author(s):  
Karim Zkik ◽  
Ghizlane Orhanou ◽  
Said El Hajji

The use of Cloud Computing in the mobile networks offer more advantages and possibilities to the mobile users such as storing, downloading and making calculation on data on demand and its offer more resources to these users such as the storage resources and calculation power. So, Mobile Cloud Computing allows users to fully utilize mobile technologies to store, to download, share and retrieve their personal data anywhere and anytime. As many recent researches show, the main problem of fully expansion and use of mobile cloud computing is security, and it's because the increasing flows and data circulation through internet that many security problems emerged and sparked the interest of the attackers. To face all this security problems, we propose in this paper an authentication and confidentiality scheme based on homomorphic encryption, and also a recovery mechanism to secure access for mobile users to the remote multi cloud servers. We also provide an implementation of our framework to demonstrate its robustness and efficiently, and a security analysis.


Sign in / Sign up

Export Citation Format

Share Document