Abstract Service for Cyber Physical Service Composition

2014 ◽  
pp. 2056-2076
Author(s):  
Yajing Zhao ◽  
Jing Dong ◽  
Jian Huang ◽  
Yansheng Zhang ◽  
I-Ling Yen ◽  
...  

The collaboration of cyber physical systems poses many real-world challenges, such as knowledge restriction, resource contention, and communication limitation. Service oriented architecture has been proven effective in solving interoperability issues in the software engineering field. The semantic web service helps to automate service discovery and integration with semantic information. This chapter models cyber physical system functionalities as services to solve the collaboration problem using semantic web services. We extend the existing OWL-S framework to address the natures of the cyber physical systems and their functionalities, which are different from software systems and their functionalities. We also present a case study to illustrate our approach.

Author(s):  
Yajing Zhao ◽  
Jing Dong ◽  
Jian Huang ◽  
Yansheng Zhang ◽  
I-Ling Yen ◽  
...  

The collaboration of cyber physical systems poses many real-world challenges, such as knowledge restriction, resource contention, and communication limitation. Service oriented architecture has been proven effective in solving interoperability issues in the software engineering field. The semantic web service helps to automate service discovery and integration with semantic information. This chapter models cyber physical system functionalities as services to solve the collaboration problem using semantic web services. We extend the existing OWL-S framework to address the natures of the cyber physical systems and their functionalities, which are different from software systems and their functionalities. We also present a case study to illustrate our approach.


2011 ◽  
Vol 20 (04) ◽  
pp. 357-370 ◽  
Author(s):  
D. PAULRAJ ◽  
S. SWAMYNATHAN ◽  
M. MADHAIYAN

One of the key challenges of the Service Oriented Architecture is the discovery of relevant services for a given task. In Semantic Web Services, service discovery is generally achieved by using the service profile ontology of OWL-S. Profile of a service is a derived, concise description and not a functional part of the semantic web service. There is no schema present in the service profile to describe the input, output (IO), and the IOs in the service profile are not always annotated with ontology concepts, whereas the process model has such a schema to describe the IOs which are always annotated with ontology concepts. In this paper, we propose a complementary sophisticated matchmaking approach which uses the concrete process model ontology of OWL-S instead of the concise service profile ontology. Empirical analysis shows that high precision and recall can be achieved by using the process model-based service discovery.


Author(s):  
Ujjal Marjit ◽  
Arup Sarkar ◽  
Subhrangsu Santra ◽  
Utpal Biswas

Automated service discovery is one of the very important features in any Semantic Web Service (SWS) based framework. Achieving this functionality in e-resource sharing system is not an easy task due to its hugeness and heterogeneity among the available resources. Any efficient automated service discovery will remain worthless until discovered services fulfill the required goal(s) demanded by the user or the client program. In this paper we have proposed a goal driven approach towards an automated service discovery using Agent Swarm in an innovative way .A novel multi agent based architecture has been introduced here for service discovery. Communications among the agent in service-oriented framework for the said purpose has also been illustrated here. Finally, the pictorial view of the running agent in the system is shown.


Author(s):  
Mourad Fariss ◽  
Naoufal El Allali ◽  
Hakima Asaidi ◽  
Mohamed Bellouki

Web service (WS) discovery is an essential task for implementing complex applications in a service oriented architecture (SOA), such as selecting, composing, and providing services. This task is limited semantically in the incorporation of the customer’s request and the web services. Furthermore, applying suitable similarity methods for the increasing number of WSs is more relevant for efficient web service discovery. To overcome these limitations, we propose a new approach for web service discovery integrating multiple similarity measures and k-means clustering. The approach enables more accurate services appropriate to the customer's request by calculating different similarity scores between the customer's request and the web services. The global semantic similarity is determined by applying k-means clustering using the obtained similarity scores. The experimental results demonstrated that the proposed semantic web service discovery approach outperforms the state-of-the approaches in terms of precision (98%), recall (95%), and F-measure (96%). The proposed approach is efficiently designed to support and facilitate the selection and composition of web services phases in complex applications.


Author(s):  
Surya Nepal ◽  
John Zic

In the Service Oriented Architecture (SOA) model, a service is characterized by its exchange of asynchronous messages, and a service contract is a desirable composition of a variety of messages. Though this model is simple, implementing large-scale, cross-organizational distributed applications may be difficult to achieve in general, as there is no guarantee that service composition will be possible because of incompatibilities of Web service contracts. We categorize compatibility issues in Web service contracts into two broad categories: (a) between contracts of different services (which we define as a composability problem), and (b) a service contract and its implementation (which we define as a conformance problem). This chapter examines and addresses these problems, first by identifying and specifying contract compatibility conditions, and second, through the use of compatibility checking tools that enable application developers to perform checks at design time.


2014 ◽  
Vol 11 (2) ◽  
pp. 67-84 ◽  
Author(s):  
Tanveer Ahmed ◽  
Abhishek Srivastava

Service oriented architecture has revolutionized the way a traditional business process is executed. The success of this architecture is Indue to the composition of multiple heterogeneous services at runtime. Web service composition is a mechanism where several web services are combined at runtime to build a complex application for a user. It is one of the most sought after processes in the context of semantic web. But, composition of web services at runtime is a difficult task owing to the availability of multiple service providers offering the same functionality. The process if exasperated by due conflicting preferences of a service consumer. In this paper, the authors address the issue of selecting a service based on Quality of Service (QoS) attributes. They utilize concepts customized from physics to create an environment that facilitates the selection of a best service from the set of similar services. The technique not only facilitates the selection of the service with the best QoS attributes, but distributes the load among expeditiously. Here in this paper, the authors concentrate on minimizing and equitably balancing the waiting time for a user. They conduct in silico experiments on multiple workflows to demonstrate the efficacy of the proposed technique to balance load efficiently among similar service offerings.


Author(s):  
Xiaoqing Frank Liu ◽  
Md Rakib Shahriar ◽  
S. M. Nahian Al Sunny ◽  
Ming C. Leu ◽  
Maggie Cheng ◽  
...  

Cyber-physical systems are gaining momentum in the domain of manufacturing. Cloud Manufacturing is also revolutionizing the manufacturing world. However, although there exist numerous physical manufacturing machines which are network-ready, very few of them are operated in a networked environment due to lack of scalability of existing cyber-physical systems. Combining the features offered by cloud manufacturing and cyber-physical systems, we develop a service-oriented architecture of scalable cyber-physical manufacturing cloud with MTConnect. A testbed of cyber-physical manufacturing cloud is being developed based on the above scalable architecture. In this system, manufacturing machines and their capabilities virtualized in a cyber-physical cloud. Manufacturing operations are represented as web services so that they are accessible across the Internet. Performance of the testbed of our cyber-physical manufacturing cloud with MTConnect is evaluated and test results show that our system achieves excellent service performance of manufacturing operations across Internet.


Author(s):  
Chao-Qun Yuan ◽  
Fang-Fang Chua

Web Service Composition is one of the technologies in Service Oriented Architecture which significantly increases the flexibility and reusability of developing service-oriented system. One of the major problems which occurs in web service composition is the difficulties of maintaining the existing running web service composition solutions due to the changes of business requirements, deployment environment, and other dynamic factors. In this proposed work, an automated system had been built to autonomously execute the web service composition. To achieve this objective, the authors had embedded semantic engine and Prolog in C# program to automatically and dynamically discover, compose and execute web service composition, i.e. a web service composition could be self-configured to automatically recover from execution failure and automatically re-generate composition solution due to business protocol changes.


Sign in / Sign up

Export Citation Format

Share Document