Mobile Usability

Author(s):  
Linda M. Gallant ◽  
Gloria Boone ◽  
Christopher S. LaRoche

Context and the pervasive environment play a much greater role in mobile technology usage than stationary technology for which usability standards and methods were traditionally developed. The examination of mobile usability shows complex issues due to the ubiquitous and portable nature of mobile devices. This chapter presents the current state of mobile usability testing. More specially, topics covered are various usability testing methods, contextual complexity, audio interfaces, eye and hands-free interactions, augmented reality, and recommendation systems.

2016 ◽  
pp. 834-844
Author(s):  
Linda M. Gallant ◽  
Gloria M. Boone ◽  
Christopher S. LaRoche

Context and the pervasive environment play a much greater role in mobile technology usage than stationary technology for which usability standards and methods were traditionally developed. The examination of mobile usability shows complex issues due to the ubiquitous and portable nature of mobile devices. This chapter presents the current state of mobile usability testing. More specially, topics covered are various usability testing methods, contextual complexity, audio interfaces, eye and hands-free interactions, augmented reality, and recommendation systems.


Author(s):  
Shilo H. Anders ◽  
Judith W. Dexheimer

The use of mobile devices in healthcare is increasing in prevalence and poses different constraints for use than traditional desktop computing. This chapter introduces several usability testing methods that are appropriate for use when designing and developing mobile technologies. Approaching the development of mobile technologies through a user-centered approach is critical to improve the interaction and use of the hardware and software that is implemented on a mobile platform in healthcare. User-centered design adds value by getting feedback about functionality, design, and constraints that need to be built into the system prior to its completion. Future work in this domain will require further tailoring and use of novel usability methods to evaluate and improve the design of mobile healthcare technologies.


2016 ◽  
pp. 429-443
Author(s):  
Shilo H. Anders ◽  
Judith W. Dexheimer

The use of mobile devices in healthcare is increasing in prevalence and poses different constraints for use than traditional desktop computing. This chapter introduces several usability testing methods that are appropriate for use when designing and developing mobile technologies. Approaching the development of mobile technologies through a user-centered approach is critical to improve the interaction and use of the hardware and software that is implemented on a mobile platform in healthcare. User-centered design adds value by getting feedback about functionality, design, and constraints that need to be built into the system prior to its completion. Future work in this domain will require further tailoring and use of novel usability methods to evaluate and improve the design of mobile healthcare technologies.


Author(s):  
Fabio A. Casari ◽  
Nassir Navab ◽  
Laura A. Hruby ◽  
Philipp Kriechling ◽  
Ricardo Nakamura ◽  
...  

Abstract Purpose of Review Augmented reality (AR) is becoming increasingly popular in modern-day medicine. Computer-driven tools are progressively integrated into clinical and surgical procedures. The purpose of this review was to provide a comprehensive overview of the current technology and its challenges based on recent literature mainly focusing on clinical, cadaver, and innovative sawbone studies in the field of orthopedic surgery. The most relevant literature was selected according to clinical and innovational relevance and is summarized. Recent Findings Augmented reality applications in orthopedic surgery are increasingly reported. In this review, we summarize basic principles of AR including data preparation, visualization, and registration/tracking and present recently published clinical applications in the area of spine, osteotomies, arthroplasty, trauma, and orthopedic oncology. Higher accuracy in surgical execution, reduction of radiation exposure, and decreased surgery time are major findings presented in the literature. Summary In light of the tremendous progress of technological developments in modern-day medicine and emerging numbers of research groups working on the implementation of AR in routine clinical procedures, we expect the AR technology soon to be implemented as standard devices in orthopedic surgery.


Author(s):  
VanDung Nguyen ◽  
Tran Trong Khanh ◽  
Tri D. T. Nguyen ◽  
Choong Seon Hong ◽  
Eui-Nam Huh

AbstractIn the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper, we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve the efficiency in computational resource management. Considering the network, computation resources, and task requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.


Sign in / Sign up

Export Citation Format

Share Document