Dynamically Reconfigurable Architectures

Author(s):  
Marek Rychly

Dynamic aspects of behavior of software systems in dynamically reconfigurable runtime architectures can result in significant architectural violations during runtime. In such cases, a system's architecture evolves during the runtime according to the actual state of the system's environment, and consequently, runtime reconfigurations may eventually lead to incorrect architecture configurations that were not considered during the system's design phases. These architectural violations are known as architectural erosion or architectural drift, and they contribute to an increasing brittleness of the system, or a lack of its coherence and clarity of its form. This chapter describes and compares possible measures to prevent architectural violations in dynamic service and component models. The aim of this chapter is to evaluate the applicability of those measures in combination with advanced features of reconfigurable runtime architectures such as ad hoc reconfiguration, service or component mobility, composition hierarchy preservation, and architectural aspects.

Author(s):  
Marek Rychly

Dynamic aspects of behavior of software systems in dynamically reconfigurable runtime architectures can result in significant architectural violations during runtime. In such cases, a system's architecture evolves during the runtime according to the actual state of the system's environment, and consequently, runtime reconfigurations may eventually lead to incorrect architecture configurations that were not considered during the system's design phases. These architectural violations are known as architectural erosion or architectural drift, and they contribute to an increasing brittleness of the system, or a lack of its coherence and clarity of its form. This chapter describes and compares possible measures to prevent architectural violations in dynamic service and component models. The aim of this chapter is to evaluate the applicability of those measures in combination with advanced features of reconfigurable runtime architectures such as ad hoc reconfiguration, service or component mobility, composition hierarchy preservation, and architectural aspects.


Automation ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 48-61
Author(s):  
Bhavyansh Mishra ◽  
Robert Griffin ◽  
Hakki Erhan Sevil

Visual simultaneous localization and mapping (VSLAM) is an essential technique used in areas such as robotics and augmented reality for pose estimation and 3D mapping. Research on VSLAM using both monocular and stereo cameras has grown significantly over the last two decades. There is, therefore, a need for emphasis on a comprehensive review of the evolving architecture of such algorithms in the literature. Although VSLAM algorithm pipelines share similar mathematical backbones, their implementations are individualized and the ad hoc nature of the interfacing between different modules of VSLAM pipelines complicates code reuseability and maintenance. This paper presents a software model for core components of VSLAM implementations and interfaces that govern data flow between them while also attempting to preserve the elements that offer performance improvements over the evolution of VSLAM architectures. The framework presented in this paper employs principles from model-driven engineering (MDE), which are used extensively in the development of large and complicated software systems. The presented VSLAM framework will assist researchers in improving the performance of individual modules of VSLAM while not having to spend time on system integration of those modules into VSLAM pipelines.


Author(s):  
László Horváth

Engineering modeling software systems have been developed during a long integration process from separated partial solutions to current modeling software platforms (MSPs). MSP is expected to provide all necessary model creation and application capabilities during integrated innovation and the life cycle of commercial and industrial products (CIP). Recently, advanced CIP is operated by component systems organized within an increasingly autonomous cyber physical system (CPS). CIP is represented by the engineering model system (EMS). EMS is driven by active contexts between the outside world and EMS, between component models of EMS, and between objects in a component model. EMS reacts to any new contribution using all formerly represented contexts. Consistent structure of contexts gives autonomous operation capability for EMS. Active contexts between the outside world and EMS make EMS sensitive to outside world changes. In the other direction, EMS can generate advice for the outside world using high level and well-organized active knowledge as context. Contributing to research in key issues around EMS and the relevant software technology, this paper introduces results in requirements against MSP capabilities to represent intelligent driving content (IDC) in EMS. A novel organized structure of IDC and continuous engineering (CE) aspects of IDC development are explained and discussed placing the main emphasis on situation awareness. Finally, a new concept is introduced in which purposeful EMS acts as the only media in communication of researchers. Specially configured MSP facilitates participation from industrial, institutional, and academic organizations. The research proceeds at the Laboratory of Intelligent Engineering Systems (IESL) in the organization of the Óbuda University.


Author(s):  
Jonathan Whittle

Formal methods, whereby a system is described and/or analyzed using precise mathematical techniques, is a well-established and yet, under-used approach for developing software systems. One of the reasons for this is that project deadlines often impose an unsatisfactory development strategy in which code is produced on an ad hoc basis without proper thought about the requirements and design of the piece of software in mind. The result is a large, often poorly documented and un-modular monolith of code that does not lend itself to formal analysis. Because of their complexity, formal methods work best when code is well structured, e.g., when they are applied at the modeling level. UML is a modeling language that is easily learned by system developers and, more importantly, an industry standard, which supports communication between the various project stakeholders. The increased popularity of UML provides a real opportunity for formal methods to be used on a daily basis within the software lifecycle. Unfortunately, the lack of precision of UML means that many formal techniques cannot be applied directly. If formal methods are to be given the place they deserve within UML, a more precise description of UML must be developed. This chapter surveys recent attempts to provide such a description, as well as techniques for analyzing UML models formally.


2011 ◽  
Vol 2011 ◽  
pp. 1-15
Author(s):  
Ismail Ktata ◽  
Fakhreddine Ghaffari ◽  
Bertrand Granado ◽  
Mohamed Abid

Applications executed on embedded systems require dynamicity and flexibility according to user and environment needs. Dynamically reconfigurable architecture could satisfy these requirements but needs efficient mechanisms to be managed efficiently. In this paper, we propose a dedicated application modeling technique that helps to establish a predictive scheduling approach to manage a dynamically reconfigurable architecture named OLLAF. OLLAF is designed to support an operating system that deals with complex embedded applications. This model will be used for a predictive scheduling based on an early estimation of our application dynamicity. A vision system of a mobile robot application has been used to validate the presented model and scheduling approach. We have demonstrated that with our modeling we can realize an efficient predictive scheduling on a robot vision application with a mean error of 6.5%.


2007 ◽  
Vol 2007 (1) ◽  
pp. 028405
Author(s):  
Neil Bergmann ◽  
Marco Platzner ◽  
Jürgen Teich

Sign in / Sign up

Export Citation Format

Share Document