Cyber Security Model of Artificial Social System Man-Machine

Author(s):  
Calin Ciufudean

Cyber Security Model of Artificial Social System Man-Machine takes advantage of an important chapter of artificial intelligence, discrete event systems applied for modelling and simulation of control, logistic supply, chart positioning, and optimum trajectory planning of artificial social systems. “An artificial social system is a set of restrictions on agents` behaviours in a multi-agent environment. Its role is to allow agents to coexist in a shared environment and pursue their respective goals in the presence of other agents” (Moses & Tennenholtz, n.d.). Despite conventional approaches, Cyber Security Model of Artificial Social System Man-Machine is not guided by rigid control algorithms but by flexible, event-adaptable ones that makes them more lively and available. All these allow a new design of artificial social systems dotted with intelligence, autonomous decision-making capabilities, and self-diagnosing properties. Heuristics techniques, data mining planning activities, scheduling algorithms, automatic data identification, processing, and control represent as many trumps for these new systems analyzing formalism. The authors challenge these frameworks to model and simulate the interaction of man-machine in order to have a better look at the human, social, and organizational privacy and information protection.

2015 ◽  
Vol 12 (102) ◽  
pp. 20140985 ◽  
Author(s):  
Kim Christensen ◽  
Dario Papavassiliou ◽  
Alexandre de Figueiredo ◽  
Nigel R. Franks ◽  
Ana B. Sendova-Franks

Prediction for social systems is a major challenge. Universality at the social level has inspired a unified theory for urban living but individual variation makes predicting relationships within societies difficult. Here, we show that in ant societies individual average speed is higher when event duration is longer. Expressed as a single scaling function, this relationship is universal because for any event duration an ant, on average, moves at the corresponding average speed except for a short acceleration and deceleration at the beginning and end. This establishes cause and effect within a social system and may inform engineering and control of artificial ones.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


2014 ◽  
Vol 39 (9) ◽  
pp. 1431-1438 ◽  
Author(s):  
Xiao-Yuan LUO ◽  
Shi-Kai SHAO ◽  
Xin-Ping GUAN ◽  
Yuan-Jie ZHAO

2021 ◽  
pp. 053901842199894
Author(s):  
Frank Adloff ◽  
Iris Hilbrich

Possible trajectories of sustainability are based on different concepts of nature. The article starts out from three trajectories of sustainability (modernization, transformation and control) and reconstructs one characteristic practice for each path with its specific conceptions of nature. The notion that nature provides human societies with relevant ecosystem services is typical of the path of modernization. Nature is reified and monetarized here, with regard to its utility for human societies. Practices of transformation, in contrast, emphasize the intrinsic ethical value of nature. This becomes particularly apparent in discourses on the rights of nature, whose starting point can be found in Latin American indigenous discourses, among others. Control practices such as geoengineering are based on earth-systemic conceptions of nature, in which no distinction is made between natural and social systems. The aim is to control the earth system as a whole in order for human societies to remain viable. Practices of sustainability thus show different ontological understandings of nature (dualistic or monistic) on the one hand and (implicit) ethics and sacralizations (anthropocentric or biocentric) on the other. The three reconstructed natures/cultures have different ontological and ethical affinities and conflict with each other. They are linked to very different knowledge cultures and life-worlds, which answer very differently to the question of what is of value in a society and in nature and how these values ought to be protected.


Sign in / Sign up

Export Citation Format

Share Document