Energy Efficiency of Coding Schemes for Underwater Wireless Sensor Networks

Author(s):  
Mark S. Leeson ◽  
Sahil Patel

Underwater Wireless Sensor Networks (UWSNs) are used in applications such as mineral exploration and environmental monitoring, and must offer reliability and energy efficiency. These are related to each other in the sense that the former requires error-correction which in turn requires energy, consuming battery life in an environment where battery replacement and recharging are difficult. This chapter thus addresses the energy efficiency of three suitable error correction methods for UWSNs, namely Automatic Repeat Request (ARQ), Forward Error Correction (FEC) and Network Coding (NC). The performance of the schemes as a function of transmission distance is determined for various packet sizes by using models of attenuation and noise that represent the underwater environment. ARQ offers the lowest efficiency and NC the highest but there is a distance at which FEC becomes the best option rather than NC suggesting a hybrid FEC/NC method.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yong Jin ◽  
Guangwei Bai

We propose an adaptive cooperative forward error correction (ACFEC) based on energy efficiency combining Reed-Solomon (RS) coder algorithm and multiple input multiple output (MIMO) channel technology with monitoring signal-to-noise ratio (SNR) in wireless sensor networks. First, we propose a new Markov chain model for FEC based on RS codes and derive the expressions for QoS on the basis of this model, which comprise four metrics: throughput, packet error rate, delay, and energy efficiency. Then, we apply RS codes with the MIMO channel technology to the cross-layer design. Numerical and simulation results show that the joint design of MIMO and adaptive cooperative FEC based on RS codes can achieve considerable spectral efficiency gain, real-time performance, reliability, and energy utility.


Author(s):  
J. H. Kong ◽  
J. J. Ong ◽  
L.-M. Ang ◽  
K. P. Seng

This chapter presents low complexity processor designs for energy-efficient security and error correction for implementation on wireless sensor networks (WSN). WSN nodes have limited resources in terms of hardware, memory, and battery life span. Small area hardware designs for encryption and error-correction modules are the most preferred approach to meet the stringent design area requirement. This chapter describes Minimal Instruction Set Computer (MISC) processor designs with a compact architecture and simple hardware components. The MISC is able to make use of a small area of the FPGA and provides a processor platform for security and error correction operations. In this chapter, two example applications, which are the Advance Encryption Standard (AES) and Reed Solomon (RS) algorithms, were implemented onto MISC. The MISC hardware architecture for AES and RS were designed and verified using the Handel-C hardware description language and implemented on a Xilinx Spartan-3 FPGA.


2017 ◽  
Vol 72 (3-4) ◽  
pp. 173-188 ◽  
Author(s):  
Ashfaq Ahmad ◽  
Sheeraz Ahmed ◽  
Muhammad Imran ◽  
Masoom Alam ◽  
Iftikhar Azim Niaz ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 4082-4095
Author(s):  
G. Chenna Kesava Reddy ◽  
Dr.A.A. Ansari ◽  
Dr.S. China Venkateswarlu

Energy efficiency is a significant issue in portable wireless networks since the battery life of versatile terminals is restricted. Protection of battery power has been tended to utilizing numerous procedures. Wireless sensor networks (WSNs), framed by various little gadgets fit for detecting, processing, and wireless correspondence are arising as a progressive innovation, with applications in different territories. The novel highlights of wireless sensor networks have carried new difficulties and issues to the field of conveyed and communitarian data preparing. In the light of the importance of reducing operating consumpt and maintaining cellular network profitability, energy efficiency in cell networks has received a crucial consideration from both scholars and the business, despite the fact that these networks are “green communication.” Since the base station is the most important energy buyer in the business, efforts have been undertaken to review the use of the base station and to identify ways to energy efficiency improvements. The trade-offs between energy utilization and throughput, under nearby just as under helpful detecting, are portrayed. The Energy efficient tradeoffs have been arranged dependent on every convention layer and examined its effect in the organization energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document