scholarly journals Energy-Aware Adaptive Cooperative FEC Protocol in MIMO Channel for Wireless Sensor Networks

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yong Jin ◽  
Guangwei Bai

We propose an adaptive cooperative forward error correction (ACFEC) based on energy efficiency combining Reed-Solomon (RS) coder algorithm and multiple input multiple output (MIMO) channel technology with monitoring signal-to-noise ratio (SNR) in wireless sensor networks. First, we propose a new Markov chain model for FEC based on RS codes and derive the expressions for QoS on the basis of this model, which comprise four metrics: throughput, packet error rate, delay, and energy efficiency. Then, we apply RS codes with the MIMO channel technology to the cross-layer design. Numerical and simulation results show that the joint design of MIMO and adaptive cooperative FEC based on RS codes can achieve considerable spectral efficiency gain, real-time performance, reliability, and energy utility.

Author(s):  
Mark S. Leeson ◽  
Sahil Patel

Underwater Wireless Sensor Networks (UWSNs) are used in applications such as mineral exploration and environmental monitoring, and must offer reliability and energy efficiency. These are related to each other in the sense that the former requires error-correction which in turn requires energy, consuming battery life in an environment where battery replacement and recharging are difficult. This chapter thus addresses the energy efficiency of three suitable error correction methods for UWSNs, namely Automatic Repeat Request (ARQ), Forward Error Correction (FEC) and Network Coding (NC). The performance of the schemes as a function of transmission distance is determined for various packet sizes by using models of attenuation and noise that represent the underwater environment. ARQ offers the lowest efficiency and NC the highest but there is a distance at which FEC becomes the best option rather than NC suggesting a hybrid FEC/NC method.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Haiyong Wang ◽  
Geng Yang ◽  
Yiran Gu ◽  
Jian Xu ◽  
Zhixin Sun

In wireless sensor networks, cooperative communication can combat the effects of channel fading by exploiting diversity gain achieved via cooperation communication among the relay nodes. A cooperative automatic retransmission request (ARQ) protocol based on two-relay node selection was proposed in this paper. A novel discrete time Markov chain model in order to analyze the throughput and energy efficiency was built, and system throughput and energy efficiency performance of proposed protocol and traditional ARQ protocol were studied based on such model. The numerical results reveal that the throughput and energy efficiency of the proposed protocol could perform better when compared with the traditional ARQ protocol.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2021 ◽  
pp. 163-174
Author(s):  
Levente Klein ◽  
Sergio Bermudez ◽  
Fernando Marianno ◽  
Hendrik Hamann

Sign in / Sign up

Export Citation Format

Share Document