Modelling the Route Choice

Author(s):  
Eric Moreno-Quintero

The issue of route choice is a key factor for the freight transport performance. Congestion at roads encourages hauliers to change routes to minimize the delays and keep lead times in a reliable range. In the context of transport planning, the route choice problem can be assessed by modelling the travel times needed to reach a destination through the different routes in a road network. Is in this point where the volume-delay functions become relevant. A Volume-Delay Function (VDF) is a mathematical representation of the increase of the travel time as more and more vehicles utilize the routes, causing congestion on the road networks. The related literature and practitioners report on the use of some known functional forms, as the BPR function, the Conical volume-delay function or the Akcelik's function, which are widely utilized in flow's assignation modelling in transport planning. A successful application of VDFs requires a proper fitting of the function's parameters. In a classical focus these parameters can be deduced from speed-flow surveys carried out at the routes or links of interest; these surveys generally require time money and personnel. As an alternative to this classical focus, particularly when facing scarcity of resources, this work carries out a mathematical analysis of the VDF functional forms, as well with an interpretation of their parameters in relation to road's operation. The results of these analyses clarifies the meaning of the functional forms for the VDFs and their parameters, and suggest other ways to assess those parameters which may be more practical for the purpose of modelling the choice of route in freight transport. Some considerations to put into practice this in Mexico are discussed at the end of this work.

2020 ◽  
Vol 13 (1) ◽  
pp. 304
Author(s):  
Anna Pernestål ◽  
Albin Engholm ◽  
Marie Bemler ◽  
Gyözö Gidofalvi

Road freight transport is a key function of modern societies. At the same time, road freight transport accounts for significant emissions. Digitalization, including automation, digitized information, and artificial intelligence, provide opportunities to improve efficiency, reduce costs, and increase service levels in road freight transport. Digitalization may also radically change the business ecosystem in the sector. In this paper, the question, “How will digitalization change the road freight transport landscape?” is addressed by developing four exploratory future scenarios, using Sweden as a case study. The results are based on input from 52 experts. For each of the four scenarios, the impacts on the road freight transport sector are investigated, and opportunities and barriers to achieving a sustainable transportation system in each of the scenarios are discussed. In all scenarios, an increase in vehicle kilometers traveled is predicted, and in three of the four scenarios, significant increases in recycling and urban freight flows are predicted. The scenario development process highlighted how there are important uncertainties in the development of the society that will be highly important for the development of the digitized freight transport landscape. One example is the sustainability paradigm, which was identified as a strategic uncertainty.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4129 ◽  
Author(s):  
Magdalena Ramirez-Peña ◽  
Francisco J. Abad Fraga ◽  
Alejandro J. Sánchez Sotano ◽  
Moises Batista

The shipbuilding industry shows a special interest in adapting to the changes proposed by the industry 4.0. This article bets on the development of an index that indicates the current situation considering that supply chain is a key factor in any type of change, and at the same time it serves as a control tool in the implementation of improvements. The proposed indices provide a first definition of the paradigm or paradigms that best fit the supply chain in order to improve its sustainability and a second definition, regarding the key enabling technologies for Industry 4.0. The values obtained put shipbuilding on the road to industry 4.0 while suggesting categorized planning of technologies.


2019 ◽  
Vol 20 (1-2) ◽  
pp. 508-512
Author(s):  
Małgorzata Walendzik ◽  
Tomasz Kamiński

The article discusses issues related to the implemented system of monitoring the road transport of sensitive goods. The Act of March 9, 2017, on the road freight transport monitoring system, came into force on April 18, 2017 and introduced procedures to fight dishonest entities involved in illicit trade in goods without paying taxes to the state budget. The Act specifies the rules of the goods tracking system covered by this legal act, as well as liability for the breach of duties, at every stage of the supply chain of road freight transport, i.e. at the level of the sending and receiving entity, the carrier and the driver of the means of transport. The goods covered by the obligatory declaration, both in the wording of the Act and in the justification to the draft act, are referred to as "sensitive goods". The registration tool used for monitoring the transport of the indicated goods is a register of notifications, which is kept in the ICT system by the head of the National Tax Administration. The transport of sensitive goods is subject to the obligation to report to this register.


2017 ◽  
Vol 123 (4) ◽  
pp. 728-745 ◽  
Author(s):  
Eva Romito ◽  
Tarek Shazly ◽  
Francis G. Spinale

Cardiovascular disease, particularly the occurrence of myocardial infarction (MI), remains a leading cause of morbidity and mortality (Go et al., Circulation 127: e6–e245, 2013; Go et al. Circulation 129: e28–e292, 2014). There is growing recognition that a key factor for post-MI outcomes is adverse remodeling and changes in the regional structure, composition, and mechanical properties of the MI region itself. However, in vivo assessment of regional mechanics post-MI can be confounded by the species, temporal aspects of MI healing, as well as size, location, and extent of infarction across myocardial wall. Moreover, MI regional mechanics have been assessed over varying phases of the cardiac cycle, and thus, uniform conclusions regarding the material properties of the MI region can be difficult. This review assesses past studies that have performed in vivo measures of MI mechanics and attempts to provide coalescence on key points from these studies, as well as offer potential recommendations for unifying approaches in terms of regional post-MI mechanics. A uniform approach to biophysical measures of import will allow comparisons across studies, as well as provide a basis for potential therapeutic markers.


ASHA Leader ◽  
2006 ◽  
Vol 11 (5) ◽  
pp. 14-17 ◽  
Author(s):  
Shelly S. Chabon ◽  
Ruth E. Cain

2009 ◽  
Vol 43 (9) ◽  
pp. 18-19
Author(s):  
MICHAEL S. JELLINEK
Keyword(s):  
The Road ◽  

PsycCRITIQUES ◽  
2013 ◽  
Vol 58 (31) ◽  
Author(s):  
David Manier
Keyword(s):  
The Road ◽  

PsycCRITIQUES ◽  
2014 ◽  
Vol 59 (52) ◽  
Author(s):  
Donald Moss
Keyword(s):  
The Road ◽  

Sign in / Sign up

Export Citation Format

Share Document