An Overview of Machine Learning in Medical Image Analysis

2017 ◽  
pp. 36-58 ◽  
Author(s):  
Anand Narasimhamurthy

Medical image analysis is an area which has witnessed an increased use of machine learning in recent times. In this chapter, the authors attempt to provide an overview of applications of machine learning techniques to medical imaging problems, focusing on some of the recent work. The target audience comprises of practitioners, engineers, students and researchers working on medical image analysis, no prior knowledge of machine learning is assumed. Although the stress is mostly on medical imaging problems, applications of machine learning to other proximal areas will also be elucidated briefly. Health informatics is a relatively new area which deals with mining large amounts of data to gain useful insights. Some of the common challenges in health informatics will be briefly touched upon and some of the efforts in related directions will be outlined.

Author(s):  
Anand Narasimhamurthy

Medical image analysis is an area which has witnessed an increased use of machine learning in recent times. In this chapter, the authors attempt to provide an overview of applications of machine learning techniques to medical imaging problems, focusing on some of the recent work. The target audience comprises of practitioners, engineers, students and researchers working on medical image analysis, no prior knowledge of machine learning is assumed. Although the stress is mostly on medical imaging problems, applications of machine learning to other proximal areas will also be elucidated briefly. Health informatics is a relatively new area which deals with mining large amounts of data to gain useful insights. Some of the common challenges in health informatics will be briefly touched upon and some of the efforts in related directions will be outlined.


2019 ◽  
Vol 14 (4) ◽  
pp. 450-469 ◽  
Author(s):  
Jiechao Ma ◽  
Yang Song ◽  
Xi Tian ◽  
Yiting Hua ◽  
Rongguo Zhang ◽  
...  

AbstractAs a promising method in artificial intelligence, deep learning has been proven successful in several domains ranging from acoustics and images to natural language processing. With medical imaging becoming an important part of disease screening and diagnosis, deep learning-based approaches have emerged as powerful techniques in medical image areas. In this process, feature representations are learned directly and automatically from data, leading to remarkable breakthroughs in the medical field. Deep learning has been widely applied in medical imaging for improved image analysis. This paper reviews the major deep learning techniques in this time of rapid evolution and summarizes some of its key contributions and state-of-the-art outcomes. The topics include classification, detection, and segmentation tasks on medical image analysis with respect to pulmonary medical images, datasets, and benchmarks. A comprehensive overview of these methods implemented on various lung diseases consisting of pulmonary nodule diseases, pulmonary embolism, pneumonia, and interstitial lung disease is also provided. Lastly, the application of deep learning techniques to the medical image and an analysis of their future challenges and potential directions are discussed.


2021 ◽  
Vol 6 (5) ◽  
pp. 156-167
Author(s):  
Chetanpal Singh

Deep learning has played a potential role in quality healthcare with fast automated and proper medical image analysis. In clinical applications, medical imaging is one of the most important parameters as with the help of this; experts can detect, monitor, and diagnose any kind of problems that are there in the patient's body. However, there are two things that one needs to understand; that is, the implementation of Artificial Neural Networks and Convolutional Neural Networks as well as deep learning to know about medical image analysis. It is necessary to state here that the deep learning approach is gaining attention in the medical imaging field in evaluating the presence or absence of disease in a patient. Mammography images, digital histopathology images, computerized tomography, etc. are some of the areas on which DL implementation focuses. One upon going through the paper will get to know the recent development that has occurred in this field and come up with a critical review on this aspect. The paper has demonstrated in detail modern deep learning models that are implemented in medical image analysis. There is no doubt about the promising future of the deep learning models and according to experts; the implementation of deep learning techniques has outperformed medical experts in numerous tasks. However, deep learning also has some drawbacks and challenges that are required to be addressed like limited datasets and many more. To mitigate such kinds of challenges, researchers are working on this aspect so that they can enhance healthcare by deploying AI.


Author(s):  
Dr. K. Naveen Kumar

Abstract: Recently, a machine learning (ML) area called deep learning emerged in the computer-vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in many fields, including medical image analysis, have started actively participating in the explosively growing field of deep learning. In this paper, deep learning techniques and their applications to medical image analysis are surveyed. This survey overviewed 1) standard ML techniques in the computer-vision field, 2) what has changed in ML before and after the introduction of deep learning, 3) ML models in deep learning, and 4) applications of deep learning to medical image analysis. The comparisons between MLs before and after deep learning revealed that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is learning image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The survey of deep learningalso revealed that there is a long history of deep-learning techniques in the class of ML with image input, except a new term, “deep learning”. “Deep learning” even before the term existed, namely, the class of ML with image input was applied to various problems in medical image analysis including classification between lesions and nonlesions, classification between lesion types, segmentation of lesions or organs, and detection of lesions. ML with image input including deep learning is a verypowerful, versatile technology with higher performance, which can bring the current state-ofthe-art performance level of medical image analysis to the next level, and it is expected that deep learning will be the mainstream technology in medical image analysis in the next few decades. “Deep learning”, or ML with image input, in medical image analysis is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical image analysis in the next few decades. Keywords: Deep learning, Convolutional neural network, Massive-training artificial neural network, Computer-aided diagnosis, Medical image analysis, Classification (key words)


Author(s):  
Khalid Raza ◽  
Nripendra Kumar Singh

Background: Interpretation of medical images for the diagnosis and treatment of complex diseases from high-dimensional and heterogeneous data remains a key challenge in transforming healthcare. In the last few years, both supervised and unsupervised deep learning achieved promising results in the area of medical image analysis. Several reviews on supervised deep learning are published, but hardly any rigorous review on unsupervised deep learning for medical image analysis is available. Objectives: The objective of this review is to systematically present various unsupervised deep learning models, tools, and benchmark datasets applied to medical image analysis. Some of the discussed models are autoencoders and its other variants, Restricted Boltzmann machines (RBM), Deep belief networks (DBN), Deep Boltzmann machine (DBM), and Generative adversarial network (GAN). Further, future research opportunities and challenges of unsupervised deep learning techniques for medical image analysis are also discussed. Conclusion: Currently, interpretation of medical images for diagnostic purposes is usually performed by human experts that may be replaced by computer-aided diagnosis due to advancement in machine learning techniques, including deep learning, and the availability of cheap computing infrastructure through cloud computing. Both supervised and unsupervised machine learning approaches are widely applied in medical image analysis, each of them having certain pros and cons. Since human supervisions are not always available or inadequate or biased, therefore, unsupervised learning algorithms give a big hope with lots of advantages for biomedical image analysis.


Author(s):  
Navjot Singh ◽  
Amarjot Kaur

The objective of the present chapter is to highlight applications of machine learning and artificial intelligence (AI) in clinical diagnosis of neurodevelopmental disorders. The proposed approach aims at recognizing behavioral traits and other cognitive aspects. The availability of numerous data and high processing power, such as graphic processing units (GPUs) or cloud computing, enabled the study of micro-patterns hundreds of times faster compared to manual analysis. AI, being a new technological breakthrough, enables study of human behavior patterns, which are hidden in millions of micro-patterns originating from human actions, reactions, and gestures. The chapter will also focus on the challenges in existing machine learning techniques and the best possible solution addressing those problems. In the future, more AI-based expert systems can enhance the accuracy of the diagnosis and prognosis process.


2021 ◽  
pp. 249-263
Author(s):  
Arash Moradzadeh ◽  
Amin Mansour-Saatloo ◽  
Morteza Nazari-Heris ◽  
Behnam Mohammadi-Ivatloo ◽  
Somayeh Asadi

Sign in / Sign up

Export Citation Format

Share Document