Energy Management Strategies to Improve Electrical Networks Using Storage Systems

2017 ◽  
pp. 1500-1514
Author(s):  
Juan Aurelio Montero-Sousa ◽  
Luis Alfonso Fernández-Serantes ◽  
José-Luis Casteleiro-Roca ◽  
Xosé Manuel Vilar-Martínez ◽  
Jose Luis Calvo-Rolle

The successive energy crises, usually linked to the rising prices of oil, bring about new topics of the energy systems management in general terms. Over all, the electrical system is one of these cases. In addition, a greater concern for environmental issues has introduced, to a greater or lesser extent, the generation from renewable sources in the electrical system. In this context, the possibility of developing and using electricity storage systems would manage mismatches between generation and demand at electricity networks, making them more efficiently. In this research, we propose a number of possible strategies based on technical peak shaving and valley filling. The tool is used as energy storage systems in general terms, regardless of the accumulation technique used. The classification of strategies essentially serves two criteria: optimization service and increased profitability.

Author(s):  
Juan Aurelio Montero-Sousa ◽  
Luis Alfonso Fernández-Serantes ◽  
José-Luis Casteleiro-Roca ◽  
Xosé Manuel Vilar-Martínez ◽  
Jose Luis Calvo-Rolle

The successive energy crises, usually linked to the rising prices of oil, bring about new topics of the energy systems management in general terms. Over all, the electrical system is one of these cases. In addition, a greater concern for environmental issues has introduced, to a greater or lesser extent, the generation from renewable sources in the electrical system. In this context, the possibility of developing and using electricity storage systems would manage mismatches between generation and demand at electricity networks, making them more efficiently. In this research, we propose a number of possible strategies based on technical peak shaving and valley filling. The tool is used as energy storage systems in general terms, regardless of the accumulation technique used. The classification of strategies essentially serves two criteria: optimization service and increased profitability.


Author(s):  
Thales Augusto Fagundes ◽  
Guilherme Henrique Favaro Fuzato ◽  
Plinio Goncalves Bueno Ferreira ◽  
Mauricio Biczkowski ◽  
Ricardo Quadros Quadros Machado

2021 ◽  
Vol 228 ◽  
pp. 113711
Author(s):  
Spyridon Chapaloglou ◽  
Athanasios Nesiadis ◽  
Konstantinos Atsonios ◽  
Nikos Nikolopoulos ◽  
Panagiotis Grammelis ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 172
Author(s):  
Sunny Katyara ◽  
Muhammad Fawad Shaikh ◽  
Shoaib Shaikh ◽  
Zahid Hussain Khand ◽  
Lukasz Staszewski ◽  
...  

With the rising load demand and power losses, the equipment in the utility network often operates close to its marginal limits, creating a dire need for the installation of new Distributed Generators (DGs). Their proper placement is one of the prerequisites for fully achieving the benefits; otherwise, this may result in the worsening of their performance. This could even lead to further deterioration if an effective Energy Management System (EMS) is not installed. Firstly, addressing these issues, this research exploits a Genetic Algorithm (GA) for the proper placement of new DGs in a distribution system. This approach is based on the system losses, voltage profiles, and phase angle jump variations. Secondly, the energy management models are designed using a fuzzy inference system. The models are then analyzed under heavy loading and fault conditions. This research is conducted on a six bus radial test system in a simulated environment together with a real-time Power Hardware-In-the-Loop (PHIL) setup. It is concluded that the optimal placement of a 3.33 MVA synchronous DG is near the load center, and the robustness of the proposed EMS is proven by mitigating the distinct contingencies within the approximately 2.5 cycles of the operating period.


Sign in / Sign up

Export Citation Format

Share Document