Surface Characterization in Fused Deposition Modeling

3D Printing ◽  
2017 ◽  
pp. 22-47 ◽  
Author(s):  
Alberto Boschetto ◽  
Luana Bottini

Fused deposition modeling is a proven technology, widely diffused in industry, born for the fabrication of aesthetic and functional prototypes. Recently used for small and medium series of parts and for tooling, it received particular attention in order to integrate prototyping systems within production. A limiting aspect of this technology is the obtainable roughness and above all its prediction: no machine software and Computer-Aided Manufacturing implements a relationship between process parameters and surface quality of components. The prediction of the surface properties is an essential tool that allows it to comply with design specifications and, in process planning, to determine manufacturing strategies. Recently, great effort has been spent to develop a characterization of such surfaces. In this chapter, prediction models are presented and a new characterization approach is detailed. It is based on the theoretical prediction of the geometrical roughness profile, thus allowing it to obtain, in advance, all roughness parameters.

Author(s):  
Alberto Boschetto ◽  
Luana Bottini

Fused deposition modeling is a proven technology, widely diffused in industry, born for the fabrication of aesthetic and functional prototypes. Recently used for small and medium series of parts and for tooling, it received particular attention in order to integrate prototyping systems within production. A limiting aspect of this technology is the obtainable roughness and above all its prediction: no machine software and Computer-Aided Manufacturing implements a relationship between process parameters and surface quality of components. The prediction of the surface properties is an essential tool that allows it to comply with design specifications and, in process planning, to determine manufacturing strategies. Recently, great effort has been spent to develop a characterization of such surfaces. In this chapter, prediction models are presented and a new characterization approach is detailed. It is based on the theoretical prediction of the geometrical roughness profile, thus allowing it to obtain, in advance, all roughness parameters.


Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


Author(s):  
Roland K. Chen ◽  
Terris T. Lo ◽  
Lei Chen ◽  
Albert J. Shih

The build quality of fused deposition modeling (FDM) parts depends on many build parameters, such as toolpath and temperature. Destructive material testing methods are widely used to examine FDM parts with different build parameters. The optimization of build parameters relies on methods of experimental design and extensive material testing. However, this approach mainly considers the bulk properties of the FDM part, without fully understanding the effect of each parameter on the build quality. This study presents a method to investigate the integrity of FDM parts using nano-focus computed tomography (NanoCT). A solid filled ULTEM sample was built and underwent NanoCT scan. The three dimensional geometry of this sample was reconstructed. Structural voids and bubbles inside the sample were also identified and quantified. The volume of this solid filled sample consists of 11.9% structural voids and bubbles. Air bubbles are further categorized into internal bubbles (bubbles inside the deposited fibers) and necking bubbles (bubbles at the bonding region of two adjacent fibers). While structural voids can be predicted according to toolpath, layer thickness, and extruder diameter, the occurrence of air bubbles are unexpected and can compromise the integrity of the built parts. NanoCT offers a non-destructive way to inspect the integrity of FDM parts. NanoCT can also be used to study three dimensional meso-structure and correlate that with build parameters. This will provide insightful information for further studying the FDM process and help to predict material strengths and to improve the part quality.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 590
Author(s):  
Tim Feuerbach ◽  
Markus Thommes

The filament is the most widespread feedstock material form used for fused deposition modeling printers. Filaments must be manufactured with tight dimensional tolerances, both to be processable in the hot-end and to obtain printed objects of high quality. The ability to successfully feed the filament into the printer is also related to the mechanical properties of the filament, which are often insufficient for pharmaceutically relevant excipients. In the scope of this work, an 8 mm single screw hot-end was designed and characterized, which allows direct printing of materials from their powder form and does not require an intermediate filament. The capability of the hot-end to increase the range of applicable excipients to fused deposition modeling was demonstrated by processing and printing several excipients that are not suitable for fused deposition modeling in their filament forms, such as ethylene vinyl acetate and poly(1-vinylpyrrolidone-co-vinyl acetate). The conveying characteristic of the screw was investigated experimentally with all materials and was in agreement with an established model from literature. The complete design information, such as the screw geometry and the hot-end dimensions, is provided in this work.


2019 ◽  
Vol 25 (3) ◽  
pp. 541-554 ◽  
Author(s):  
Antonio Armillotta

Purpose The purpose of this paper is to propose a method for simulating the profile of part edges as a result of the FDM process. Deviations from nominal edge shape are predicted as a function of the layer thickness and three characteristic angles depending on part geometry and build orientation. Design/methodology/approach Typical patterns of edge profiles were observed on sample FDM parts and interpreted as the effects of possible toolpath generation strategies. An algorithm was developed to generate edge profiles consistent with the patterns expected for any combination of input variables. Findings Experimental tests confirmed that the simulation procedure can correctly predict basic geometric properties of edge profiles such as frequency, amplitude and shape of periodic asperities. Research limitations/implications The algorithm takes into account only a subset of the error causes recognized in previous studies. Additional causes could be integrated in the simulation to improve the estimation of geometric errors. Practical implications Edge simulation may help avoid process choices that result in aesthetic and functional defects on FDM parts. Originality/value Compared to the statistical estimation of geometric errors, graphical simulation allows a more detailed characterization of edge quality and a better diagnosis of error causes.


2021 ◽  
Vol 338 ◽  
pp. 01005
Author(s):  
Damian Dzienniak ◽  
Jan Pawlik

Additive manufacturing has been gaining popularity and availability year by year, which has resulted in its dynamic development. The most common 3D printing method as of today, FDM (Fused Deposition Modeling), owing to its peculiarity, does not always guarantee producing objects with low surface roughness. The authors of the present article have taken on the analysis of the impact of FDM printing on the roughness of the filament thus processed. They also investigate the relationship between the roughness of the unprocessed filament (made of polycaprolactam, that is, polyamide 6 or PA6) with admixtures of other materials (carbon fiber, glass fiber) and the surface quality of the manufactured object. The main subject of the analysis is the side surfaces of 3D prints, as it is their quality that is usually directly dependent on many factors connected with the process of the laying of the consecutive layers. The authors check step by step whether there exists a pronounced relationship between the roughness of the original filament material and the roughness of the obtained surface.


Author(s):  
Shajahan Bin Maidin ◽  
Zulkeflee Abdullah ◽  
Ting Kung Hieng

One of the disadvantages of fused deposition modeling (FDM) is waste produced during the printing processes. This investigation focuses on using 100% recycled Acrylonitrile Butadiene Styrene (ABS) for the FDM process. The recycling begins with re-granule the waste ABS material and produces it into a new filament. The new recycled filament was used to print the test specimen. Investigation on the mechanical properties and the surface quality of the test specimen and comparison with standard ABS specimen was done. The result shows that the recycled ABS can be produced into filament with 335°C of extrusion temperature and 1.5 mm/s travel speed of the extruder conveyor. The surface roughness of recycled specimen is 6.94% higher than the standard ABS specimen. For ultimate tensile strength, there is a small difference in X and Y orientation between the standard and the recycled ABS specimen which are 22.93% and 19.98%, respectively. However, in Z orientation, it is 52.33% lower. This investigation proves that ABS can be recycled without significantly affecting its mechanical properties.


2017 ◽  
Vol 14 (7) ◽  
pp. 540-550 ◽  
Author(s):  
Aleksandr B. Stefaniak ◽  
Ryan F. LeBouf ◽  
Jinghai Yi ◽  
Jason Ham ◽  
Timothy Nurkewicz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document