Biomining Microorganisms' Molecular Aspects and Applications in Biotechnology and Bioremediation

Author(s):  
Jyoti Srivastava ◽  
Pradeep Srivastava

The effective dissolution of metals is widely known with the help of microorganisms called bioleaching or biomining used for the extraction of metals from their ores. Usually the microorganisms involved in biomining are chemolithoautotrophic and extremophilic in nature, since they are living in highly acidic environments (pH 1-3.0) containing heavy concentrations of metals. The commonly found genera of archea are Sulfolobus, Acidianus, Metallosphaera, and Sulfurisphaera. Throughput microbial genomics and proteomics analysis provides novel insights of metabolism mechanisms of bioleaching microbes. These microbes are having significant impact on the bioremediation of acid mine drainage (AMD) resulted from many industrial operations. Using these microbes, various metals including Ni, Cd, Cu, Fe, As, Pb, Hg, Cr, Mn, Zn, etc. are removed from the environment. Biomining microorganisms are having significant applications in the biotechnological processes including extraction of gold from ores, extraction of nickel from low-grade sulfide ores, extraction of copper from chalcopyrite, etc.

2020 ◽  
Vol 989 ◽  
pp. 559-563
Author(s):  
Ashimkhan T. Kanayev ◽  
Khussain Valiyev ◽  
Aleksandr Bulaev

The goal of the present work was to perform bioleaching of uranium from low grade ore from Vostok deposit (Republic of Kazakhstan), which was previously subjected to long-term acid leaching. The ore initially contained from 0.15 to 0.20% of uranium in the form of uraninite, but ore samples used in the study contained about 0.05% of uranium, as it was exhausted during acid leaching, and uranium was partially leached. Representative samples of ore were processed in 1 m columns, leach solutions containing 5, 10, 20 g/L of sulfuric acid and bacterial cells (about 104) were percolated through the ore. Leaching was performed at ambient temperature for 70 days. In one of the percolators, the leaching was performed with leaching solution containing 10 g/L of H2SO4, cells of A. ferrooxidans, and 0.5 g/L of formaldehyde. Leaching with the solution containing 5, 10, and 20 g/L of sulfuric acid made it possible to extract 50, 53, and 58% of uranium. Addition of formaldehyde in leach solution led to the decrease in uranium extraction extent down to 37%. Thus, the results of the present work demonstrated that uranium ore exhausted during long-term acid leaching may be successfully subjected to bioleaching, that allows extracting residual quantities of uranium. Leaching rate of uranium from exhausted ore depended on both sulfuric acid concentration and microbial activity of bacteria isolated from acid mine drainage, formed on uranium deposit. In the same time, acid mine drainage may be used as a source of inoculate, to start bioleaching process.


2009 ◽  
Vol 71-73 ◽  
pp. 677-680 ◽  
Author(s):  
D. Carnicero ◽  
E. Díaz ◽  
O. Escolano ◽  
D. Rubinos ◽  
O. Ballesteros ◽  
...  

Limestone is commonly used for neutralization of acid mine drainage (AMD). Its main advantages are its lower price, sustained generation of alkalinity and production of low sludge volumes. Nevertheless, armouring of limestone by ferric hydroxides is a problem in oxic limestone drains and in active limestone treatment systems, reducing the efficiency of the process. Due to these disadvantages, there is a permanent search for cheaper and more effective neutralization agents. Many alkaline industrial wastes are gaining importance in the treatment of AMD. The possibilities to use two different industrial by-products, red mud from a bauxite exploitation and low grade magnesium hydroxide from a magnesite mine, as neutralizing and bacterial inhibiting agents, and the comparison with conventional limestone treatment has been studied in this paper. An AMD from Rio Tinto mine site with an initial pH of 2.4 and a ferric concentration of 1 g/L was used. Comparative test were done percolating the AMD in a continuous form with a peristaltic pump through three different columns filled with limestone, red mud and low grade magnesite, during one month and in same conditions of flow rate and amount of each compound used to fill the columns. The evolution of pH, iron and heavy metals, sulphates and microbial populations in the percolate were monitored at different times. The results showed that the best neutralization capacity was obtained with low grade magnesite during the month treatment. By contraire limestone and red mud loosed their neutralization capacity after 10 and 13 days respectively. The control of microbial populations showed that there is an inhibition of chemolithotropic bacteria as long as the materials maintain their neutralization capacity, reverting to the initial conditions when this capacity was loosed.


2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Casey Oliver A. Turingan ◽  
Divina Joyce A. Fabella ◽  
Kim Ahmed N. Sadol ◽  
Arnel B. Beltran ◽  
Richard D. Alorro ◽  
...  

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Ameet J. Pinto ◽  
Jonathan O. Sharp ◽  
Michael J. Yoder ◽  
Robert Almstrand

Bacteria belonging to the family Acidimicrobiaceae are frequently encountered in heavy metal-contaminated acidic environments. However, their phylogenetic and metabolic diversity is poorly resolved. We present draft genome sequences of two novel and phylogenetically distinct Acidimicrobiaceae members assembled from an acid mine drainage biofilm metagenome.


2016 ◽  
Vol 11 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Stefan Demcak ◽  
Magdalena Balintova

Abstract Sulphates in wastewaters have an origin as the by-products of a variety of industrial operations. A specific and major producer of such effluents, which contained sulphates and heavy metals, is the mining industry. These contaminants should be removed from wastewater using an adequate process of treatment. The paper deals with selected heavy metals (iron, cooper, and manganese) and sulphate removal from acid mine drainage outflowing from an abandoned mine in Smolnik (Slovakia) using the modified biosorbent - Holland hemp hurds. Pre-treatment of acid mine drainage was based on oxidation of ferrous cations from acid mine drainage by hydrogen peroxide and subsequent precipitation. The precipitate were analysed by infrared spectrometry which found the precipitate containing hydroxide and sulphate functional groups. During this process the concentration of sulphate decreased by 43.8 %. Hemp hurds modified by NaOH decreased concentration of Cu2+ in solution by about 70 %


2021 ◽  
Vol 280 ◽  
pp. 08016
Author(s):  
Marinela Panayotova ◽  
Vladko Panayotov

Sustainable mining and mineral processing is of paramount importance for producing metals needed for our society development. Membrane processes are able to contribute to the comprehensive extraction of metals from mined ores, while at the same time decrease the amounts of used water and reagents and ensure discharge to the environment of wastewater meeting the legislation requirements. Membranebased technologies are still underused in metals obtaining although their development and price have made their application affordable. The paper presents in brief membrane processes and displays examples of their application in various areas of mining and mineral processing, such as coping with acid mine drainage and mine influenced water, recovery of metals, reagents and water in hydrometallurgy, recovery of lithium from brines, and treatment of wastewater. Emphasis is placed on pressure driven membrane processes, as well as on the very recent studies in the area. Advantages of membrane processes application in mining and mineral processing are pointed out as well as constrains to be overcome.


Sign in / Sign up

Export Citation Format

Share Document