A Meshfree-Based Lattice Boltzmann Approach for Simulation of Fluid Flows Within Complex Geometries

Author(s):  
Sonam Tanwar

This chapter develops a meshless formulation of lattice Boltzmann method for simulation of fluid flows within complex and irregular geometries. The meshless feature of proposed technique will improve the accuracy of standard lattice Boltzmann method within complicated fluid domains. Discretization of such domains itself may introduce significant numerical errors into the solution. Specifically, in phase transition or moving boundary problems, discretization of the domain is a time-consuming and complex process. In these problems, at each time step, the computational domain may change its shape and need to be re-meshed accordingly for the purpose of accuracy and stability of the solution. The author proposes to combine lattice Boltzmann method with a Galerkin meshfree technique popularly known as element-free Galerkin method in this chapter to remove the difficulties associated with traditional grid-based methods.

Author(s):  
R. Kamali ◽  
A. H. Tabatabaee Frad

It is known that the Lattice Boltzmann Method is not very effective when it is being used for the high speed compressible viscous flows; especially complex fluid flows around bodies. Different reasons have been reported for this unsuccessfulness; Lacking in required isotropy in the employed lattices and the restriction of having low Mach number in Taylor expansion of the Maxwell Boltzmann distribution as the equilibrium distribution function, might be mentioned as the most important ones. In present study, a new numerical method based on Li et al. scheme is introduced which enables the Lattice BoltzmannMethod to stably simulate the complex flows around a 2D circular cylinder. Furthermore, more stable implementation of boundary conditions in Lattice Boltzmann method is discussed.


Author(s):  
Felipe A. Valenzuela ◽  
Amador M. Guzmán ◽  
Andrés J. Díaz

During the last years the aerodynamics characteristics of airfoils have been studied solving numerically the Navier-Stokes (NS) equations. These calculations require a significant computational cost due to both the second order and the nonlinear characteristics of the NS partial differential equations. Therefore, efforts have been devoted to reduce this cost and increase the accuracy of the numerical methods. The Lattice-Boltzmann Method (LBM) has become a great alternative to simulate this problem and a variety of fluid flows. In this method, the convective operator is linear and the pressure is calculated directly by the equation of state without implementing iterative methods. This work represents a preliminary investigation of a laminar flow over airfoils under low Reynolds number conditions (Re = 500). Solutions are obtained using a Multi-Block mesh refinement method. In order to validate the computational code, calculations are performed on a SD7003 airfoil at an angle of attack of 4° and 30°, which corresponds to the available numerical and experimental results. The results of this study agree well with previous experimental and numerical studies demonstrating the capabilities of the LBM to simulate accurately laminar flows over airfoils as well as capturing and predicting the laminar separation bubbles.


Author(s):  
Shin K. Kang ◽  
Yassin A. Hassan

For moving boundary problems, previous body-conformal grid methods require frequent re-meshing as the boundary moves, thus increasing computational cost. An immersed boundary method (IBM) is an attractive method to resolve the problem since it is based on the fixed, non-body-conformal grids. In the IBM, force density terms are used so that no-slip boundary condition is satisfied on the boundary. On the other hand, lattice Boltzmann methods (LBMs) have been used as an alternative of Navier-Stokes equation method due to their efficiency to parallelize and simplicity to implement. The common feature of the IBM and the LBM of using non-body-conformal grids motivated the use of the IBM in the lattice Boltzmann method frame, which is usually called an immersed boundary-lattice Boltzmann method (IB-LBM). Besides, a split-forcing property in the LBM, due to its kinetic nature, facilitates the use of direct-forcing IBM. For the evaluation of boundary force density term, we need to adopt an interpolation scheme because the boundary, in general, does not match computational nodes. The interpolation schemes can be classified into diffuse and sharp interface schemes. The former usually uses the discrete delta function to evaluate the boundary force on the prescribed boundary points, while the latter uses interpolation from neighboring fluid nodes to evaluate the boundary force on the computation node either inside or outside closest to the boundary. In the diffuse scheme, the boundary force density terms evaluated on the boundary points should be distributed onto neighboring computational nodes using the discrete delta functions so that the boundary effect may exert on computational process. The objective of this study is to compare two interface schemes simultaneously for a moving boundary problem under the IB-LBM and to understand advantages and disadvantages of each scheme. We considered a problem of flow induced by inline oscillation of a circular cylinder since both experimental and body-conformal grid method results are available for this problem. Velocity results from both schemes showed overall good agreement with experimental data. However, the sharp interface scheme showed spurious oscillations in the surface force coefficient and pressure fields, although after filtering or smoothing, the force coefficients showed good agreement with the body-fitted results. In contrast, the diffuse interface scheme produced smooth variations in the surface force coefficient but over-predicted the absolute values especially at phase angles with the high magnitude of accelerations. These results can be attributed to the use of discrete delta functions. We could reduce the over-prediction by considering the effect of the diffuse area.


2014 ◽  
Vol 670-671 ◽  
pp. 659-663
Author(s):  
Yong Guang Chen ◽  
Li Wan

The immersed boundary method (IBM) for the simulation of the interaction between fluid and flexible boundaries in combination with the lattice Boltzmann method (LBM) is described. The LBM is used to compute the flow field, the interaction between fluid and flexible boundaries to be treated by the IBM. To analyze the key factors of combination method and implementation process. An example is presented to verify the efficiency and accuracy of the described algorithm. These will provide a base for large scale simulation involving flexible boundaries in the future.


Sign in / Sign up

Export Citation Format

Share Document