A Big Data Platform for Enhancing Life Imaging Activities

Author(s):  
Leila Abidi ◽  
Hanene Azzag ◽  
Salima Benbernou ◽  
Mehdi Bentounsi ◽  
Christophe Cérin ◽  
...  

The field of life imaging spans a large spectrum of scientific study from mathematics and computer science to medical, passing by physics, biology, etc. The challenge of IDV project is to enrich a multi-parametrized, quantitative, qualitative, integrative, and correlative life imaging in health. It deals with linking the current research developments and applications of life imaging in medicine and biology to develop computational models and methods for imaging and quantitative image analysis and validate the added diagnostic and therapeutic value of new imaging methods and biomarkers.

Author(s):  
Vinod K. Berry ◽  
Xiao Zhang

In recent years it became apparent that we needed to improve productivity and efficiency in the Microscopy Laboratories in GE Plastics. It was realized that digital image acquisition, archiving, processing, analysis, and transmission over a network would be the best way to achieve this goal. Also, the capabilities of quantitative image analysis, image transmission etc. available with this approach would help us to increase our efficiency. Although the advantages of digital image acquisition, processing, archiving, etc. have been described and are being practiced in many SEM, laboratories, they have not been generally applied in microscopy laboratories (TEM, Optical, SEM and others) and impact on increased productivity has not been yet exploited as well.In order to attain our objective we have acquired a SEMICAPS imaging workstation for each of the GE Plastic sites in the United States. We have integrated the workstation with the microscopes and their peripherals as shown in Figure 1.


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


2011 ◽  
Vol 55 (5) ◽  
pp. 455-459 ◽  
Author(s):  
Ryotaro Jingu ◽  
Masafumi Ohki ◽  
Sumiko Watanabe ◽  
Sadafumi Tamiya ◽  
Setsuo Sugishima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document