scholarly journals Automatic Detection of Blood Vessel in Retinal Images Using Vesselness Enhancement Filter and Adaptive Thresholding

Ophthalmology ◽  
2018 ◽  
pp. 18-33
Author(s):  
Abderrahmane Elbalaoui ◽  
Mohamed Fakir ◽  
Taifi khaddouj ◽  
Abdelkarim MERBOUHA

Retinal blood vessels detection and measurement of morphological attributes, such as length, width, sinuosity and corners are very much important for the diagnosis and treatment of different ocular diseases including diabetic retinopathy (DR), glaucoma, and hypertension. This paper presents a integration method for blood vessels detection in fundus retinal images. The proposed method consists of two main steps. The first step is pre-processing of retinal image to improve the retinal images by evaluation of several image enhancement techniques. The second step is vessels detection, the vesselness filter is usually used to enhance the blood vessels. The enhancement filter is designed from the adaptive thresholding of the output of the vesselness filter for vessels detection. The algorithms performance is compared and analyzed on three publicly available databases (DRIVE, STARE and CHASE_DB) of retinal images using a number of measures, which include accuracy, sensitivity, and specificity.

Author(s):  
Abderrahmane Elbalaoui ◽  
Mohamed Fakir ◽  
Taifi khaddouj ◽  
Abdelkarim MERBOUHA

Retinal blood vessels detection and measurement of morphological attributes, such as length, width, sinuosity and corners are very much important for the diagnosis and treatment of different ocular diseases including diabetic retinopathy (DR), glaucoma, and hypertension. This paper presents a integration method for blood vessels detection in fundus retinal images. The proposed method consists of two main steps. The first step is pre-processing of retinal image to improve the retinal images by evaluation of several image enhancement techniques. The second step is vessels detection, the vesselness filter is usually used to enhance the blood vessels. The enhancement filter is designed from the adaptive thresholding of the output of the vesselness filter for vessels detection. The algorithms performance is compared and analyzed on three publicly available databases (DRIVE, STARE and CHASE_DB) of retinal images using a number of measures, which include accuracy, sensitivity, and specificity.


2010 ◽  
Vol 1 (3) ◽  
pp. 16-27 ◽  
Author(s):  
I. K. E. Purnama ◽  
K. Y. E. Aryanto ◽  
M. H. F. Wilkinson

Retinal blood vessels can give information about abnormalities or disease by examining its pathological changes. One abnormality is diabetic retinopathy, characterized by a disorder of retinal blood vessels resulting from diabetes mellitus. Currently, diabetic retinopathy is one of the major causes of human vision abnormalities and blindness. Hence, early detection can lead to proper treatment, and segmentation of the abnormality provides a map of retinal vessels that can facilitate the assessment of the characteristics of these vessels. In this paper, the authors propose a new method, consisting of a sequence of procedures, to segment blood vessels in a retinal image. In the method, attribute filtering with a so-called Max-Tree is used to represent the image based on its gray value. The filtering process is done using the branches filtering approach in which the tree branches are selected based on the non-compactness of the nodes. The selection is started from the leaves. This experiment was performed on 40 retinal images, and utilized the manual segmentation created by an observer to validate the results. The proposed method can deliver an average accuracy of 94.21%.


Portable Eye Examination Kit retina (Peek Retina™, Peek Vision Ltd, UK) and 3D Printed Ophthalmoscope (3DPO) were identified to have acceptable image for retinal evaluation, however the retinal images quality in term of blood vessels visibility between both devices was uncertain. This study was conducted to compare the quality of image based on blood vessels visibility between Peek Retina and 3DPO for fractal dimension (Df) analysis. In this study, a total of 40 retinal images (nPEEK=20, n3DPO=20) of 20 participants were captured on random eyes. The best retinal images with good focus and significant retinal blood vessels visibility of Peek Retina and 3DPO were selected for image quality analysis. The retinal images were cropped approximately following the size of the cornea and resized to 900 by 900 pixels of resolution using GNU Image Manipulation Program Version 2.8.18 (GIMP). The images were randomly sorted as Retinal Image Quality Assessment (RIQA) generated by Google form. Likert scale was implemented to assess the preferences scale of retinal image quality in determining the visibility of retinal vasculature to be traced with four choices of response options (1; very difficult, 2; difficult, 3; easy and 4; very easy). Prior to the retinal image assessment, ten optometrists were asked to experience retinal blood vessels tracing and consequently evaluate the 40 images by choosing the scale options (1 to 4) based on visibility retinal blood vessels. Mann-Whitney test indicated that the blood vessel tracing was easier for Peek Retina (median = 3) than for 3DPO (median = 2), p < 0.0001. Retinal image captured by Peek Retina was rated as very easy (43.5%) for blood vessels tracing as compared to the image from 3DPO (17.0%)Error! Reference source not found.. Only 1.5% of the image captured by PEEK was considered as a very difficult for blood vessel tracing. Difficult and easy preference scales of blood vessel tracing for PEEK were 16.5% and 38.5% respectively. 34% of 3DPO retinal image was graded as difficult for blood vessel tracing followed by 28.5% (easy), 20.5% (very difficult) and 17.0% (very easy). The results indicate that a retinal image photographed by Peek Retina was more preferable in tracing retinal vascular network for Df analysis as compared to 3DPO.


Author(s):  
I. K. E. Purnama ◽  
K. Y. E. Aryanto ◽  
M. H. F. Wilkinson

Retinal blood vessels can give information about abnormalities or disease by examining its pathological changes. One abnormality is diabetic retinopathy, characterized by a disorder of retinal blood vessels resulting from diabetes mellitus. Currently, diabetic retinopathy is one of the major causes of human vision abnormalities and blindness. Hence, early detection can lead to proper treatment, and segmentation of the abnormality provides a map of retinal vessels that can facilitate the assessment of the characteristics of these vessels. In this paper, the authors propose a new method, consisting of a sequence of procedures, to segment blood vessels in a retinal image. In the method, attribute filtering with a so-called Max-Tree is used to represent the image based on its gray value. The filtering process is done using the branches filtering approach in which the tree branches are selected based on the non-compactness of the nodes. The selection is started from the leaves. This experiment was performed on 40 retinal images, and utilized the manual segmentation created by an observer to validate the results. The proposed method can deliver an average accuracy of 94.21%.


2020 ◽  
Vol 50 (2) ◽  
pp. 49-57
Author(s):  
Alice Krestanova ◽  
Jan Kubicek ◽  
Marek Penhaker ◽  
Juraj Timkovic

For the retinal blood vessels segmentation, we used a method, which is based on the morphological operations. The output of this process is extracted retinal binary image, where is situated main blood vessels. In this paper is used dataset of images (2800 images) from device RetCam3. Before applying the image processing, it was selected 30 images with diagnosed pre-plus diseases, and it is divided into two groups with low contrast and good contrast images. In the next part of the analysis, it was analyzing and showing blood vessels with tortuosity. Tortuosity is a symptom of ROP (retinopathy of prematurity). The clinical physicians evaluate tortuosity by visual comparison of the retinal images images. For this reason, it was suggested model which can automatically indicate the tortuosity of the retinal blood vessels by setting a threshold of the blood vessels curvature.


2019 ◽  
Vol 2 (3) ◽  
pp. 43-67
Author(s):  
Sanyukta Chetia ◽  
SR Nirmala

Purpose: The study of retinal blood vessel morphology is of great importance in retinal image analysis. The retinal blood vessels have a number of distinct features such as width, diameter, tortuosity, etc. In this paper, a method is proposed to measure the tortuosity of retinal blood vessels obtained from retinal fundus images. Tortuosity is a situation in which blood vessels become tortuous, that is, curved or non-smooth. It is one of the earliest changes that occur in blood vessels in some retinal diseases. Hence, its detection at an early stage can prevent the progression of retinal diseases such as diabetic retinopathy, hypertensive retinopathy, retinopathy of prematurity, etc. The present study focuses on the measurement of retinal blood vessel tortuosity for the analysis of hypertensive retinopathy. Hypertensive retinopathy is a condition in which the retinal vessels undergo changes and become tortuous due to long term high blood pressure. Early recognition of hypertensive retinopathy signs remains an important step in determining the target-organ damage and risk assessment of hypertensive patients. Hence, this paper attempts to estimate tortuosity using image-processing techniques that have been tested on artery and vein segments of retinal images. Design: Image processing-based model designed to measure blood vessel tortuosity. Methods: In this paper, a novel image processing-based model is proposed for tortuosity measurement. This parameter will be helpful for analyzing hypertensive retinopathy. To test the eff ectiveness of the system in determining tortuosity, the method is first applied on a set of synthetically generated blood vessels. Then, the method is repeated on blood vessel (both artery and vein) segments extracted from retinal images collected from publicly available databases and on images collected from a local eye hospital. The blood vessel segment images that are used in the method are binary images where blood vessels are represented by white pixels (foreground), while black pixels represent the background. Vessels are then classified into normal, moderately tortuous, and severely tortuous by following the analysis performed on the images in the Retinal Vessel Tortuosity Data Set (RET-TORT) obtained from BioIm Lab, Laboratory of Biomedical Imaging (Padova, Italy). This database consists of 30 artery segments and 30 vein segments, which were manually ordered on the basis of increasing tortuosity by Dr. S. Piermarocchi, a retinal specialist belonging to the Department of Ophthalmology of the University of Padova (Italy). The artery and vein segments with the fewest number of turns are given a low tortuosity ranking, while those with the greatest number of turns are given a high tortuosity ranking by the expert. Based on this concept, our proposed method defines retinal image segments as normal when they present the fewest number of twists/turns, moderately tortuous when they present more twists/turns than normal but fewer than severely tortuous vessels, and severely tortuous when they present a greater number of twists/turns than moderately tortuous vessels. On implementing our image processing-based method on binary blood vessel segment images that are represented by white pixels, it is found that the vessel pixel (white pixels) count increases with increasing vessel tortuosity. That is, for normal blood vessels, the white pixel count is less compared to moderately tortuous and severely tortuous vessels. It should be noted that the images obtained from the different databases and from the local hospital for this experiment are not hypertensive retinopathy images. Instead, they are mostly normal eye images and very few of them show tortuous blood vessels. Results: The results of the synthetically generated vessel segment images from the baseline for the evaluation of retinal blood vessel tortuosity. The proposed method is then applied on the retinal vessel segments that are obtained from the DRIVE and HRF databases, respectively. Finally, to evaluate the capability of the proposed method in determining the tortuosity level of the blood vessels, the method is tested with a standard tortuous database, namely, the RET-TORT database. The results are then compared with the tortuosity level mentioned in the database. It was found that our method is able to classify blood vessel images as normal, moderately tortuous, and severely tortuous, with results closely matching the clinical ordering provided by the expert in the RET-TORT database. Subjective evaluation was also performed by research scholars and postgraduate students to cross-validate the results. Conclusion: The close correlation between the tortuosity evaluation using the proposed method and the clinical ordering of retinal vessels as provided by the retinal specialist in the RET-TORT database shows that, although simple, this method can evaluate the tortuosity of vessel segments effectively.  


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3637-3640

Retinal vessels ID means to isolate the distinctive retinal configuration issues, either wide or restricted from fundus picture foundation, for example, optic circle, macula, and unusual sores. Retinal vessels recognizable proof investigations are drawing in increasingly more consideration today because of pivotal data contained in structure which is helpful for the identification and analysis of an assortment of retinal pathologies included yet not restricted to: Diabetic Retinopathy (DR), glaucoma, hypertension, and Age-related Macular Degeneration (AMD). With the advancement of right around two decades, the inventive methodologies applying PC supported systems for portioning retinal vessels winding up increasingly significant and coming nearer. Various kinds of retinal vessels segmentation strategies discussed by using Deep Learning methods. At that point, the pre-processing activities and the best in class strategies for retinal vessels distinguishing proof are presented.


Fractal dimension (Df) has been identified as indirect measure in quantifying the complexity of retinal vessel network which is useful for early detection of vascular changes. Reliability studies of Df measurement on retinal vasculature, has been conducted on retinal images processed by using semi-automated software which only permits image with 45ᵒ field of view (FOV). Smartphone-assisted fundus camera retinal image has a maximum 30ᵒ FOV which warrant manual processing in measuring the Df. Retinal blood vessels need to be manually segmented to produce binary images for retinal vasculatures Df measurement. Therefore, this study was conducted to determine the intragrader and intergrader reliability of manual segmentation of the retinal vasculature Df measurement from retinal images taken using a smartphone-assisted fundus camera Forty-five retinal images were captured using the Portable Eye Examination Kit Retina (Peek Retina™, Peek Vision Ltd, UK). Suitable image for Df analysis were selected based on gradable retinal image criteria which included; i) good image focus, ii) centered position of optic nerve head (ONH) and iii) significant blood vessel visibility. The images were cropped 0.5 disc diameters away from disc margin and resized to 500x500 pixels using GNU Image Manipulation Program Version 2.8.18 (GIMP, The GIMP Team, United States). Retinal vessels were manually traced by using layering capabilities for blood vessel segmentation. Df values of segmented blood vessels were measured by using Image J (National Institutes of Health, USA) and its plugin software, FracLac Version 2.5. Intragrader and intergrader reliability was determined by comparing the Df values between; two readings measured one week apart by a grader and readings from two different graders, respectively, using intraclass correlation coefficient (ICC) and Bland-Altman graphical plots. Intragrader agreement for retinal Df showed good reliability with ICC of 0.899 (95% CI: 0.814–0.945). Bland Altman analysis indicated good agreement between Df values at different grading time (mean difference 0.0050; 95% CI:-0.0001–0.0101). Intergrader reliability for retinal Df was high with ICC of 0.814 (95% CI: 0.459–0.919). Bland Altman plot revealed good intergrader agreement for retinal Df between two graders with a bias value of 0.0158 (95% CI: 0.0092–0.0223). In conclusion, manual segmentation of retinal image captured by smartphone-assisted fundus camera has good reliability (0.75 < ICC < 0.9) for Df analysis to study the morphology of retinal vasculatures.


Sign in / Sign up

Export Citation Format

Share Document