scholarly journals PREMATURE INFANT BLOOD VESSEL SEGMENTATION OF RETINAL IMAGES BASED ON HYBRID METHOD FOR THE DETERMINATION OF TORTUOSITY

2020 ◽  
Vol 50 (2) ◽  
pp. 49-57
Author(s):  
Alice Krestanova ◽  
Jan Kubicek ◽  
Marek Penhaker ◽  
Juraj Timkovic

For the retinal blood vessels segmentation, we used a method, which is based on the morphological operations. The output of this process is extracted retinal binary image, where is situated main blood vessels. In this paper is used dataset of images (2800 images) from device RetCam3. Before applying the image processing, it was selected 30 images with diagnosed pre-plus diseases, and it is divided into two groups with low contrast and good contrast images. In the next part of the analysis, it was analyzing and showing blood vessels with tortuosity. Tortuosity is a symptom of ROP (retinopathy of prematurity). The clinical physicians evaluate tortuosity by visual comparison of the retinal images images. For this reason, it was suggested model which can automatically indicate the tortuosity of the retinal blood vessels by setting a threshold of the blood vessels curvature.

2019 ◽  
Vol 2 (3) ◽  
pp. 43-67
Author(s):  
Sanyukta Chetia ◽  
SR Nirmala

Purpose: The study of retinal blood vessel morphology is of great importance in retinal image analysis. The retinal blood vessels have a number of distinct features such as width, diameter, tortuosity, etc. In this paper, a method is proposed to measure the tortuosity of retinal blood vessels obtained from retinal fundus images. Tortuosity is a situation in which blood vessels become tortuous, that is, curved or non-smooth. It is one of the earliest changes that occur in blood vessels in some retinal diseases. Hence, its detection at an early stage can prevent the progression of retinal diseases such as diabetic retinopathy, hypertensive retinopathy, retinopathy of prematurity, etc. The present study focuses on the measurement of retinal blood vessel tortuosity for the analysis of hypertensive retinopathy. Hypertensive retinopathy is a condition in which the retinal vessels undergo changes and become tortuous due to long term high blood pressure. Early recognition of hypertensive retinopathy signs remains an important step in determining the target-organ damage and risk assessment of hypertensive patients. Hence, this paper attempts to estimate tortuosity using image-processing techniques that have been tested on artery and vein segments of retinal images. Design: Image processing-based model designed to measure blood vessel tortuosity. Methods: In this paper, a novel image processing-based model is proposed for tortuosity measurement. This parameter will be helpful for analyzing hypertensive retinopathy. To test the eff ectiveness of the system in determining tortuosity, the method is first applied on a set of synthetically generated blood vessels. Then, the method is repeated on blood vessel (both artery and vein) segments extracted from retinal images collected from publicly available databases and on images collected from a local eye hospital. The blood vessel segment images that are used in the method are binary images where blood vessels are represented by white pixels (foreground), while black pixels represent the background. Vessels are then classified into normal, moderately tortuous, and severely tortuous by following the analysis performed on the images in the Retinal Vessel Tortuosity Data Set (RET-TORT) obtained from BioIm Lab, Laboratory of Biomedical Imaging (Padova, Italy). This database consists of 30 artery segments and 30 vein segments, which were manually ordered on the basis of increasing tortuosity by Dr. S. Piermarocchi, a retinal specialist belonging to the Department of Ophthalmology of the University of Padova (Italy). The artery and vein segments with the fewest number of turns are given a low tortuosity ranking, while those with the greatest number of turns are given a high tortuosity ranking by the expert. Based on this concept, our proposed method defines retinal image segments as normal when they present the fewest number of twists/turns, moderately tortuous when they present more twists/turns than normal but fewer than severely tortuous vessels, and severely tortuous when they present a greater number of twists/turns than moderately tortuous vessels. On implementing our image processing-based method on binary blood vessel segment images that are represented by white pixels, it is found that the vessel pixel (white pixels) count increases with increasing vessel tortuosity. That is, for normal blood vessels, the white pixel count is less compared to moderately tortuous and severely tortuous vessels. It should be noted that the images obtained from the different databases and from the local hospital for this experiment are not hypertensive retinopathy images. Instead, they are mostly normal eye images and very few of them show tortuous blood vessels. Results: The results of the synthetically generated vessel segment images from the baseline for the evaluation of retinal blood vessel tortuosity. The proposed method is then applied on the retinal vessel segments that are obtained from the DRIVE and HRF databases, respectively. Finally, to evaluate the capability of the proposed method in determining the tortuosity level of the blood vessels, the method is tested with a standard tortuous database, namely, the RET-TORT database. The results are then compared with the tortuosity level mentioned in the database. It was found that our method is able to classify blood vessel images as normal, moderately tortuous, and severely tortuous, with results closely matching the clinical ordering provided by the expert in the RET-TORT database. Subjective evaluation was also performed by research scholars and postgraduate students to cross-validate the results. Conclusion: The close correlation between the tortuosity evaluation using the proposed method and the clinical ordering of retinal vessels as provided by the retinal specialist in the RET-TORT database shows that, although simple, this method can evaluate the tortuosity of vessel segments effectively.  


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xi-Rong Bao ◽  
Xin Ge ◽  
Li-Huang She ◽  
Shi Zhang

Segmentation of retinal blood vessels is significant to diagnosis and evaluation of ocular diseases like glaucoma and systemic diseases such as diabetes and hypertension. The retinal blood vessel segmentation for small and low contrast vessels is still a challenging problem. To solve this problem, a new method based on cake filter is proposed. Firstly, a quadrature filter band called cake filter band is made up in Fourier field. Then the real component fusion is used to separate the blood vessel from the background. Finally, the blood vessel network is got by a self-adaption threshold. The experiments implemented on the STARE database indicate that the new method has a better performance than the traditional ones on the small vessels extraction, average accuracy rate, and true and false positive rate.


Portable Eye Examination Kit retina (Peek Retina™, Peek Vision Ltd, UK) and 3D Printed Ophthalmoscope (3DPO) were identified to have acceptable image for retinal evaluation, however the retinal images quality in term of blood vessels visibility between both devices was uncertain. This study was conducted to compare the quality of image based on blood vessels visibility between Peek Retina and 3DPO for fractal dimension (Df) analysis. In this study, a total of 40 retinal images (nPEEK=20, n3DPO=20) of 20 participants were captured on random eyes. The best retinal images with good focus and significant retinal blood vessels visibility of Peek Retina and 3DPO were selected for image quality analysis. The retinal images were cropped approximately following the size of the cornea and resized to 900 by 900 pixels of resolution using GNU Image Manipulation Program Version 2.8.18 (GIMP). The images were randomly sorted as Retinal Image Quality Assessment (RIQA) generated by Google form. Likert scale was implemented to assess the preferences scale of retinal image quality in determining the visibility of retinal vasculature to be traced with four choices of response options (1; very difficult, 2; difficult, 3; easy and 4; very easy). Prior to the retinal image assessment, ten optometrists were asked to experience retinal blood vessels tracing and consequently evaluate the 40 images by choosing the scale options (1 to 4) based on visibility retinal blood vessels. Mann-Whitney test indicated that the blood vessel tracing was easier for Peek Retina (median = 3) than for 3DPO (median = 2), p < 0.0001. Retinal image captured by Peek Retina was rated as very easy (43.5%) for blood vessels tracing as compared to the image from 3DPO (17.0%)Error! Reference source not found.. Only 1.5% of the image captured by PEEK was considered as a very difficult for blood vessel tracing. Difficult and easy preference scales of blood vessel tracing for PEEK were 16.5% and 38.5% respectively. 34% of 3DPO retinal image was graded as difficult for blood vessel tracing followed by 28.5% (easy), 20.5% (very difficult) and 17.0% (very easy). The results indicate that a retinal image photographed by Peek Retina was more preferable in tracing retinal vascular network for Df analysis as compared to 3DPO.


Ophthalmology ◽  
2018 ◽  
pp. 18-33
Author(s):  
Abderrahmane Elbalaoui ◽  
Mohamed Fakir ◽  
Taifi khaddouj ◽  
Abdelkarim MERBOUHA

Retinal blood vessels detection and measurement of morphological attributes, such as length, width, sinuosity and corners are very much important for the diagnosis and treatment of different ocular diseases including diabetic retinopathy (DR), glaucoma, and hypertension. This paper presents a integration method for blood vessels detection in fundus retinal images. The proposed method consists of two main steps. The first step is pre-processing of retinal image to improve the retinal images by evaluation of several image enhancement techniques. The second step is vessels detection, the vesselness filter is usually used to enhance the blood vessels. The enhancement filter is designed from the adaptive thresholding of the output of the vesselness filter for vessels detection. The algorithms performance is compared and analyzed on three publicly available databases (DRIVE, STARE and CHASE_DB) of retinal images using a number of measures, which include accuracy, sensitivity, and specificity.


2009 ◽  
Vol 09 (04) ◽  
pp. 633-642 ◽  
Author(s):  
A. BESSAID ◽  
A. FEROUI ◽  
M. MESSADI

Automated analysis and interpretation of retinal images has become an incontournable diagnostic step in ophthalmology. Retinal blood vessels morphology can be an important indicator for diseases such as diabetic retinopathy; and their detection also serves for image registration. This paper presents a method based on mathematical morphology for extraction of vascular tree in color retinal image with low contrast. It consists in contrast enhancement and application of watershed transformation in order to segment blood vessels in digital fundus images.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuliang Ma ◽  
Xue Li ◽  
Xiaopeng Duan ◽  
Yun Peng ◽  
Yingchun Zhang

Purpose. Retinal blood vessel image segmentation is an important step in ophthalmological analysis. However, it is difficult to segment small vessels accurately because of low contrast and complex feature information of blood vessels. The objective of this study is to develop an improved retinal blood vessel segmentation structure (WA-Net) to overcome these challenges. Methods. This paper mainly focuses on the width of deep learning. The channels of the ResNet block were broadened to propagate more low-level features, and the identity mapping pathway was slimmed to maintain parameter complexity. A residual atrous spatial pyramid module was used to capture the retinal vessels at various scales. We applied weight normalization to eliminate the impacts of the mini-batch and improve segmentation accuracy. The experiments were performed on the DRIVE and STARE datasets. To show the generalizability of WA-Net, we performed cross-training between datasets. Results. The global accuracy and specificity within datasets were 95.66% and 96.45% and 98.13% and 98.71%, respectively. The accuracy and area under the curve of the interdataset diverged only by 1%∼2% compared with the performance of the corresponding intradataset. Conclusion. All the results show that WA-Net extracts more detailed blood vessels and shows superior performance on retinal blood vessel segmentation tasks.


Fractal dimension (Df) has been identified as indirect measure in quantifying the complexity of retinal vessel network which is useful for early detection of vascular changes. Reliability studies of Df measurement on retinal vasculature, has been conducted on retinal images processed by using semi-automated software which only permits image with 45ᵒ field of view (FOV). Smartphone-assisted fundus camera retinal image has a maximum 30ᵒ FOV which warrant manual processing in measuring the Df. Retinal blood vessels need to be manually segmented to produce binary images for retinal vasculatures Df measurement. Therefore, this study was conducted to determine the intragrader and intergrader reliability of manual segmentation of the retinal vasculature Df measurement from retinal images taken using a smartphone-assisted fundus camera Forty-five retinal images were captured using the Portable Eye Examination Kit Retina (Peek Retina™, Peek Vision Ltd, UK). Suitable image for Df analysis were selected based on gradable retinal image criteria which included; i) good image focus, ii) centered position of optic nerve head (ONH) and iii) significant blood vessel visibility. The images were cropped 0.5 disc diameters away from disc margin and resized to 500x500 pixels using GNU Image Manipulation Program Version 2.8.18 (GIMP, The GIMP Team, United States). Retinal vessels were manually traced by using layering capabilities for blood vessel segmentation. Df values of segmented blood vessels were measured by using Image J (National Institutes of Health, USA) and its plugin software, FracLac Version 2.5. Intragrader and intergrader reliability was determined by comparing the Df values between; two readings measured one week apart by a grader and readings from two different graders, respectively, using intraclass correlation coefficient (ICC) and Bland-Altman graphical plots. Intragrader agreement for retinal Df showed good reliability with ICC of 0.899 (95% CI: 0.814–0.945). Bland Altman analysis indicated good agreement between Df values at different grading time (mean difference 0.0050; 95% CI:-0.0001–0.0101). Intergrader reliability for retinal Df was high with ICC of 0.814 (95% CI: 0.459–0.919). Bland Altman plot revealed good intergrader agreement for retinal Df between two graders with a bias value of 0.0158 (95% CI: 0.0092–0.0223). In conclusion, manual segmentation of retinal image captured by smartphone-assisted fundus camera has good reliability (0.75 < ICC < 0.9) for Df analysis to study the morphology of retinal vasculatures.


2021 ◽  
Vol 11 (1) ◽  
pp. 45-66
Author(s):  
Mete Durlu ◽  
Ozan Eski ◽  
Emre Sumer

In many geospatial applications, automated detection of buildings has become a key concern in recent years. Determination of building locations provides great benefits for numerous geospatial applications such as urban planning, disaster management, infrastructure planning, environmental monitoring. The study  aims to present a practical technique for extracting the buildings from high-resolution satellite images using color image segmentation and binary morphological image processing. The proposed method is implemented on satellite images of 4 different selected study areas of the city of Batikent, Ankara.  According to experiments conducted on the study areas, overall accuracy, sensitivity, and F1 values were computed to be on average, respectively. After applying morphological operations, the same metrics are calculated . The results show that the determination of urban buildings can be done more successfully with the suitable combination of morphological operations using rectangular structuring element. Keywords: Building Extraction; Colour Image Processing;Colour space conversion; Image Morphology; Remote Sensing        


2018 ◽  
Vol 7 (2) ◽  
pp. 687
Author(s):  
R. Lavanya ◽  
G. K. Rajini ◽  
G. Vidhya Sagar

Retinal Vessel detection for retinal images play crucial role in medical field for proper diagnosis and treatment of various diseases like diabetic retinopathy, hypertensive retinopathy etc. This paper deals with image processing techniques for automatic analysis of blood vessel detection of fundus retinal image using MATLAB tool. This approach uses intensity information and local phase based enhancement filter techniques and morphological operators to provide better accuracy.Objective: The effect of diabetes on the eye is called Diabetic Retinopathy. At the early stages of the disease, blood vessels in the retina become weakened and leak, forming small hemorrhages. As the disease progress, blood vessels may block, and sometimes leads to permanent vision loss. To help Clinicians in diagnosis of diabetic retinopathy in retinal images with an early detection of abnormalities with automated tools.Methods: Fundus photography is an imaging technology used to capture retinal images in diabetic patient through fundus camera. Adaptive Thresholding is used as pre-processing techniques to increase the contrast, and filters are applied to enhance the image quality. Morphological processing is used to detect the shape of blood vessels as they are nonlinear in nature.Results: Image features like, Mean and Standard deviation and entropy, for textural analysis of image with Gray Level Co-occurrence Matrix features like contrast and Energy are calculated for detected vessels.Conclusion: In diabetic patients eyes are affected severely compared to other organs. Early detection of vessel structure in retinal images with computer assisted tools may assist Clinicians for proper diagnosis and pathology. 


Sign in / Sign up

Export Citation Format

Share Document