Drug Discovery

Author(s):  
S. Lakshmana Prabu

Modern chemistry foundations were made in between the 18th and 19th centuries and have been extended in 20th century. R&D towards synthetic chemistry was introduced during the 1960s. Development of new molecular drugs from the herbal plants to synthetic chemistry is the fundamental scientific improvement. About 10-14 years are needed to develop a new molecule with an average cost of more than $800 million. Pharmaceutical industries spend the highest percentage of revenues, but the achievement of desired molecular entities into the market is not increasing proportionately. As a result, an approximate of 0.01% of new molecular entities are approved by the FDA. The highest failure rate is due to inadequate efficacy exhibited in Phase II of the drug discovery and development stage. Innovative technologies such as combinatorial chemistry, DNA sequencing, high-throughput screening, bioinformatics, computational drug design, and computer modeling are now utilized in the drug discovery. These technologies can accelerate the success rates in introducing new molecular entities into the market.

2000 ◽  
Vol 22 (6) ◽  
pp. 169-170 ◽  
Author(s):  
Charles J. Manly

Drug discovery today requires the focused use of laboratory automation and other resources in combinatorial chemistry and high-throughput screening (HTS). The ultimate value of both combinatorial chemistry and HTS technologies and the lasting impact they will have on the drug discovery process is a chapter that remains to be written. Central to their success and impact is how well they are integrated with each other and with the rest of the drug discovery processes-informatics is key to this success. This presentation focuses on informatics and the integration of the disciplines of combinatorial chemistry and HTS in modern drug discovery. Examples from experiences at Neurogen from the last five years are described.


Author(s):  
Ravi Kumar

In this review we will discuss about the Lead identification, the lead identification is mostly used for the discovery of successful clinical development compound, and it is an essential site for drug discovery. Various important factors that required for discovery a quality leads, such as- Physicochemical, ADME, Biological and PK parameters. These all parameters are required for the identification of high-quality leads. The Combinational chemistry is mostly used for the generation of many compounds in only one process from a mixture. The high throughput screening is suitable for new drug in pharmaceutical industries and it’s mostly used from last two decades.


2001 ◽  
Vol 23 (6) ◽  
pp. 191-192 ◽  
Author(s):  
Charles J. Manly

Drug discovery today includes considerable focus of laboratory automation and other resources on both combinatorial chemistry and high-throughput screening, and computational chemistry has been a part of pharmaceutical research for many years. The real benefit of these technologies is beyond the exploitation of each individually. Only recently have significant efforts focused on effectively integrating these and other discovery disciplines to realize their larger potential. This technical note will describe one example of these integration efforts.


2003 ◽  
Vol 9 (1) ◽  
pp. 49-58
Author(s):  
Margit Asmild ◽  
Nicholas Oswald ◽  
Karen M. Krzywkowski ◽  
Søren Friis ◽  
Rasmus B. Jacobsen ◽  
...  

2021 ◽  
pp. 247255522110232
Author(s):  
Michael D. Scholle ◽  
Doug McLaughlin ◽  
Zachary A. Gurard-Levin

Affinity selection mass spectrometry (ASMS) has emerged as a powerful high-throughput screening tool used in drug discovery to identify novel ligands against therapeutic targets. This report describes the first high-throughput screen using a novel self-assembled monolayer desorption ionization (SAMDI)–ASMS methodology to reveal ligands for the human rhinovirus 3C (HRV3C) protease. The approach combines self-assembled monolayers of alkanethiolates on gold with matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry (MS), a technique termed SAMDI-ASMS. The primary screen of more than 100,000 compounds in pools of 8 compounds per well was completed in less than 8 h, and informs on the binding potential and selectivity of each compound. Initial hits were confirmed in follow-up SAMDI-ASMS experiments in single-concentration and dose–response curves. The ligands identified by SAMDI-ASMS were further validated using differential scanning fluorimetry (DSF) and in functional protease assays against HRV3C and the related SARS-CoV-2 3CLpro enzyme. SAMDI-ASMS offers key benefits for drug discovery over traditional ASMS approaches, including the high-throughput workflow and readout, minimizing compound misbehavior by using smaller compound pools, and up to a 50-fold reduction in reagent consumption. The flexibility of this novel technology opens avenues for high-throughput ASMS assays of any target, thereby accelerating drug discovery for diverse diseases.


Sign in / Sign up

Export Citation Format

Share Document