Drug Discovery (Lead Identification and High Throughput Screening)

Author(s):  
Ravi Kumar

In this review we will discuss about the Lead identification, the lead identification is mostly used for the discovery of successful clinical development compound, and it is an essential site for drug discovery. Various important factors that required for discovery a quality leads, such as- Physicochemical, ADME, Biological and PK parameters. These all parameters are required for the identification of high-quality leads. The Combinational chemistry is mostly used for the generation of many compounds in only one process from a mixture. The high throughput screening is suitable for new drug in pharmaceutical industries and it’s mostly used from last two decades.

Author(s):  
S. Lakshmana Prabu

Modern chemistry foundations were made in between the 18th and 19th centuries and have been extended in 20th century. R&D towards synthetic chemistry was introduced during the 1960s. Development of new molecular drugs from the herbal plants to synthetic chemistry is the fundamental scientific improvement. About 10-14 years are needed to develop a new molecule with an average cost of more than $800 million. Pharmaceutical industries spend the highest percentage of revenues, but the achievement of desired molecular entities into the market is not increasing proportionately. As a result, an approximate of 0.01% of new molecular entities are approved by the FDA. The highest failure rate is due to inadequate efficacy exhibited in Phase II of the drug discovery and development stage. Innovative technologies such as combinatorial chemistry, DNA sequencing, high-throughput screening, bioinformatics, computational drug design, and computer modeling are now utilized in the drug discovery. These technologies can accelerate the success rates in introducing new molecular entities into the market.


1999 ◽  
Vol 4 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Ingrid Schmid ◽  
Isabel Sattler ◽  
Susanne Grabley ◽  
Ralf Thiericke

At present, compound libraries from combinatorial chemistry are the major source for high throughput screening (HTS) programs in drug discovery. On the other hand, nature has been proven to be an outstanding source for new and innovative drugs. Secondary metabolites from plants, animals, and microorganisms show a striking structural diversity that supplements chemically synthesized compounds or libraries in drug discovery programs. Unfortunately, extracts from natural sources are usually complex mixtures of compounds, often generated in time-consuming and, for the most part, manual processes. Because quality and quantity of the provided samples play a pivotal role in the success of HTS programs, this poses serious problems. In order to make samples of natural origin competitive with synthetic compound libraries, we devised a novel, automated sample preparation procedure based on solid-phase extraction (SPE). By making use of modified Zymark (Hopkinton, MA) RapidTrace® SPE workstations, we developed an easy-to-handle and effective fractionation method that generates high-quality samples from natural origin, fulfilling the requirements for an integration in high throughput drug discovery programs.


2003 ◽  
Vol 9 (1) ◽  
pp. 49-58
Author(s):  
Margit Asmild ◽  
Nicholas Oswald ◽  
Karen M. Krzywkowski ◽  
Søren Friis ◽  
Rasmus B. Jacobsen ◽  
...  

2021 ◽  
pp. 247255522110232
Author(s):  
Michael D. Scholle ◽  
Doug McLaughlin ◽  
Zachary A. Gurard-Levin

Affinity selection mass spectrometry (ASMS) has emerged as a powerful high-throughput screening tool used in drug discovery to identify novel ligands against therapeutic targets. This report describes the first high-throughput screen using a novel self-assembled monolayer desorption ionization (SAMDI)–ASMS methodology to reveal ligands for the human rhinovirus 3C (HRV3C) protease. The approach combines self-assembled monolayers of alkanethiolates on gold with matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry (MS), a technique termed SAMDI-ASMS. The primary screen of more than 100,000 compounds in pools of 8 compounds per well was completed in less than 8 h, and informs on the binding potential and selectivity of each compound. Initial hits were confirmed in follow-up SAMDI-ASMS experiments in single-concentration and dose–response curves. The ligands identified by SAMDI-ASMS were further validated using differential scanning fluorimetry (DSF) and in functional protease assays against HRV3C and the related SARS-CoV-2 3CLpro enzyme. SAMDI-ASMS offers key benefits for drug discovery over traditional ASMS approaches, including the high-throughput workflow and readout, minimizing compound misbehavior by using smaller compound pools, and up to a 50-fold reduction in reagent consumption. The flexibility of this novel technology opens avenues for high-throughput ASMS assays of any target, thereby accelerating drug discovery for diverse diseases.


2021 ◽  
Vol 22 (9) ◽  
pp. 4417
Author(s):  
Lester J Lambert ◽  
Stefan Grotegut ◽  
Maria Celeridad ◽  
Palak Gosalia ◽  
Laurent JS De Backer ◽  
...  

Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as “undruggable” and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer’s disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.


Sign in / Sign up

Export Citation Format

Share Document