Semantic Technologies and Big Data Analytics for Cyber Defence

Web Services ◽  
2019 ◽  
pp. 1430-1443
Author(s):  
Louise Leenen ◽  
Thomas Meyer

The Governments, military forces and other organisations responsible for cybersecurity deal with vast amounts of data that has to be understood in order to lead to intelligent decision making. Due to the vast amounts of information pertinent to cybersecurity, automation is required for processing and decision making, specifically to present advance warning of possible threats. The ability to detect patterns in vast data sets, and being able to understanding the significance of detected patterns are essential in the cyber defence domain. Big data technologies supported by semantic technologies can improve cybersecurity, and thus cyber defence by providing support for the processing and understanding of the huge amounts of information in the cyber environment. The term big data analytics refers to advanced analytic techniques such as machine learning, predictive analysis, and other intelligent processing techniques applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends and other useful information. Semantic technologies is a knowledge representation paradigm where the meaning of data is encoded separately from the data itself. The use of semantic technologies such as logic-based systems to support decision making is becoming increasingly popular. However, most automated systems are currently based on syntactic rules. These rules are generally not sophisticated enough to deal with the complexity of decisions required to be made. The incorporation of semantic information allows for increased understanding and sophistication in cyber defence systems. This paper argues that both big data analytics and semantic technologies are necessary to provide counter measures against cyber threats. An overview of the use of semantic technologies and big data technologies in cyber defence is provided, and important areas for future research in the combined domains are discussed.

Author(s):  
Louise Leenen ◽  
Thomas Meyer

The Governments, military forces and other organisations responsible for cybersecurity deal with vast amounts of data that has to be understood in order to lead to intelligent decision making. Due to the vast amounts of information pertinent to cybersecurity, automation is required for processing and decision making, specifically to present advance warning of possible threats. The ability to detect patterns in vast data sets, and being able to understanding the significance of detected patterns are essential in the cyber defence domain. Big data technologies supported by semantic technologies can improve cybersecurity, and thus cyber defence by providing support for the processing and understanding of the huge amounts of information in the cyber environment. The term big data analytics refers to advanced analytic techniques such as machine learning, predictive analysis, and other intelligent processing techniques applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends and other useful information. Semantic technologies is a knowledge representation paradigm where the meaning of data is encoded separately from the data itself. The use of semantic technologies such as logic-based systems to support decision making is becoming increasingly popular. However, most automated systems are currently based on syntactic rules. These rules are generally not sophisticated enough to deal with the complexity of decisions required to be made. The incorporation of semantic information allows for increased understanding and sophistication in cyber defence systems. This paper argues that both big data analytics and semantic technologies are necessary to provide counter measures against cyber threats. An overview of the use of semantic technologies and big data technologies in cyber defence is provided, and important areas for future research in the combined domains are discussed.


2016 ◽  
Vol 6 (3) ◽  
pp. 53-64 ◽  
Author(s):  
Louise Leenen ◽  
Thomas Meyer

The Governments, military forces and other organisations responsible for cybersecurity deal with vast amounts of data that has to be understood in order to lead to intelligent decision making. Due to the vast amounts of information pertinent to cybersecurity, automation is required for processing and decision making, specifically to present advance warning of possible threats. The ability to detect patterns in vast data sets, and being able to understanding the significance of detected patterns are essential in the cyber defence domain. Big data technologies supported by semantic technologies can improve cybersecurity, and thus cyber defence by providing support for the processing and understanding of the huge amounts of information in the cyber environment. The term big data analytics refers to advanced analytic techniques such as machine learning, predictive analysis, and other intelligent processing techniques applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends and other useful information. Semantic technologies is a knowledge representation paradigm where the meaning of data is encoded separately from the data itself. The use of semantic technologies such as logic-based systems to support decision making is becoming increasingly popular. However, most automated systems are currently based on syntactic rules. These rules are generally not sophisticated enough to deal with the complexity of decisions required to be made. The incorporation of semantic information allows for increased understanding and sophistication in cyber defence systems. This paper argues that both big data analytics and semantic technologies are necessary to provide counter measures against cyber threats. An overview of the use of semantic technologies and big data technologies in cyber defence is provided, and important areas for future research in the combined domains are discussed.


Author(s):  
Louise Leenen ◽  
Thomas Meyer

Cybersecurity analysts rely on vast volumes of security event data to predict, identify, characterize, and deal with security threats. These analysts must understand and make sense of these huge datasets in order to discover patterns which lead to intelligent decision making and advance warnings of possible threats, and this ability requires automation. Big data analytics and artificial intelligence can improve cyber defense. Big data analytics methods are applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends, and other useful information. Artificial intelligence provides algorithms that can reason or learn and improve their behavior, and includes semantic technologies. A large number of automated systems are currently based on syntactic rules which are generally not sophisticated enough to deal with the level of complexity in this domain. An overview of artificial intelligence and big data technologies in cyber defense is provided, and important areas for future research are identified and discussed.


Author(s):  
Louise Leenen ◽  
Thomas Meyer

Cybersecurity analysts rely on vast volumes of security event data to predict, identify, characterize, and deal with security threats. These analysts must understand and make sense of these huge datasets in order to discover patterns which lead to intelligent decision making and advance warnings of possible threats, and this ability requires automation. Big data analytics and artificial intelligence can improve cyber defense. Big data analytics methods are applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends, and other useful information. Artificial intelligence provides algorithms that can reason or learn and improve their behavior, and includes semantic technologies. A large number of automated systems are currently based on syntactic rules which are generally not sophisticated enough to deal with the level of complexity in this domain. An overview of artificial intelligence and big data technologies in cyber defense is provided, and important areas for future research are identified and discussed.


2017 ◽  
pp. 83-99
Author(s):  
Sivamathi Chokkalingam ◽  
Vijayarani S.

The term Big Data refers to large-scale information management and analysis technologies that exceed the capability of traditional data processing technologies. Big Data is differentiated from traditional technologies in three ways: volume, velocity and variety of data. Big data analytics is the process of analyzing large data sets which contains a variety of data types to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful business information. Since Big Data is new emerging field, there is a need for development of new technologies and algorithms for handling big data. The main objective of this paper is to provide knowledge about various research challenges of Big Data analytics. A brief overview of various types of Big Data analytics is discussed in this paper. For each analytics, the paper describes process steps and tools. A banking application is given for each analytics. Some of research challenges and possible solutions for those challenges of big data analytics are also discussed.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Kiran Adnan ◽  
Rehan Akbar

Abstract Process of information extraction (IE) is used to extract useful information from unstructured or semi-structured data. Big data arise new challenges for IE techniques with the rapid growth of multifaceted also called as multidimensional unstructured data. Traditional IE systems are inefficient to deal with this huge deluge of unstructured big data. The volume and variety of big data demand to improve the computational capabilities of these IE systems. It is necessary to understand the competency and limitations of the existing IE techniques related to data pre-processing, data extraction and transformation, and representations for huge volumes of multidimensional unstructured data. Numerous studies have been conducted on IE, addressing the challenges and issues for different data types such as text, image, audio and video. Very limited consolidated research work have been conducted to investigate the task-dependent and task-independent limitations of IE covering all data types in a single study. This research work address this limitation and present a systematic literature review of state-of-the-art techniques for a variety of big data, consolidating all data types. Recent challenges of IE are also identified and summarized. Potential solutions are proposed giving future research directions in big data IE. The research is significant in terms of recent trends and challenges related to big data analytics. The outcome of the research and recommendations will help to improve the big data analytics by making it more productive.


Author(s):  
Sadaf Afrashteh ◽  
Ida Someh ◽  
Michael Davern

Big data analytics uses algorithms for decision-making and targeting of customers. These algorithms process large-scale data sets and create efficiencies in the decision-making process for organizations but are often incomprehensible to customers and inherently opaque in nature. Recent European Union regulations require that organizations communicate meaningful information to customers on the use of algorithms and the reasons behind decisions made about them. In this paper, we explore the use of explanations in big data analytics services. We rely on discourse ethics to argue that explanations can facilitate a balanced communication between organizations and customers, leading to transparency and trust for customers as well as customer engagement and reduced reputation risks for organizations. We conclude the paper by proposing future empirical research directions.


2019 ◽  
Vol 22 (2) ◽  
pp. 187-202 ◽  
Author(s):  
Fawad Ahmad

This systematic literature review provides the association between memory processes, auditors judgement and decision-making process under the influence of cognitive errors. Due to limited cognitive resources, auditors are unable to analyze the population of accounting transactions, therefore, they use sampling and heuristics for information processing. In the context of Big Data (BD), auditors may face a similar problem of information overload and exhibit cognitive errors, resulting in the selection and analysis of irrelevant information cues. But Big Data analytics (BDA) can facilitate information processing and analysis of complex diverse Big Data by reducing the influence of auditor’s cognitive errors. The current study adapts Ding et al., (2017) framework in the auditing context that identify causes of cognitive errors influencing auditor’s information processing. This review identified 75 auditing related studies to elaborate the role of BD and BDA in improving audit judgement. In addition, role of memory, cognitive errors, and judgement and decision-making are highlighted by using 61 studies. The analysis provides useful insight in different open areas by proposing research propositions and research questions that can be explored by future research to gain extensive understanding on the association between memory and audit judgement in the context of BD and BDA. La revisión sistemática de la literatura proporciona la asociación entre los procesos de la memoria, el juicio de los auditores y el proceso de toma de decisiones bajo la influencia de errores cognitivos. Debido a los limitados recursos cognitivos, los auditores no pueden analizar la población de transacciones contables; por lo tanto, utilizan el muestreo y la heurística para el procesamiento de la información. En el contexto de Big Data (BD), los auditores pueden enfrentarse a un problema similar de sobrecarga de información y exhibir errores cognitivos, lo que resulta en la selección y análisis de indicios de información irrelevantes. No obstante, la analítica de Big Data (BDA) puede facilitar el procesamiento de información y el análisis de datos complejos y diversos al reducir la influencia de los errores cognitivos del auditor. El presente estudio adapta el marco de trabajo de Ding et al (2017) en el contexto de la auditoría que identifica las causas de los errores cognitivos que influyen en el procesamiento de la información del auditor. Esta revisión identificó 75 estudios relacionados con la auditoría para elaborar el papel de BD y BDA en la mejora del juicio de auditoría. Además, el papel de la memoria, los errores cognitivos y el juicio y la toma de decisiones se destacan mediante el uso de 61 estudios. El análisis proporciona una visión útil de los diferentes aspectos abiertos de la cuestión proponiendo propuestas y preguntas de estudio que puedan ser exploradas por la investigación futura para obtener una comprensión amplia de la asociación entre la memoria y el juicio de auditoría en el contexto de BD y BDA.


Author(s):  
Sivamathi Chokkalingam ◽  
Vijayarani S.

The term Big Data refers to large-scale information management and analysis technologies that exceed the capability of traditional data processing technologies. Big Data is differentiated from traditional technologies in three ways: volume, velocity and variety of data. Big data analytics is the process of analyzing large data sets which contains a variety of data types to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful business information. Since Big Data is new emerging field, there is a need for development of new technologies and algorithms for handling big data. The main objective of this paper is to provide knowledge about various research challenges of Big Data analytics. A brief overview of various types of Big Data analytics is discussed in this paper. For each analytics, the paper describes process steps and tools. A banking application is given for each analytics. Some of research challenges and possible solutions for those challenges of big data analytics are also discussed.


Sign in / Sign up

Export Citation Format

Share Document