Deep Learning in Early Detection of Alzheimer's

Author(s):  
Anitha S. Pillai ◽  
Bindu Menon

Advancement in technology has paved the way for the growth of big data. We are able to exploit this data to a great extent as the costs of collecting, storing, and analyzing a large volume of data have plummeted considerably. There is an exponential increase in the amount of health-related data being generated by smart devices. Requisite for proper mining of the data for knowledge discovery and therapeutic product development is very essential. The expanding field of big data analytics is playing a vital role in healthcare practices and research. A large number of people are being affected by Alzheimer's Disease (AD), and as a result, it becomes very challenging for the family members to handle these individuals. The objective of this chapter is to highlight how deep learning can be used for the early diagnosis of AD and present the outcomes of research studies of both neurologists and computer scientists. The chapter gives introduction to big data, deep learning, AD, biomarkers, and brain images and concludes by suggesting blood biomarker as an ideal solution for early detection of AD.

Author(s):  
Anitha S. Pillai ◽  
Bindu Menon

Advancement in technology has paved the way for the growth of big data. We are able to exploit this data to a great extent as the costs of collecting, storing, and analyzing a large volume of data have plummeted considerably. There is an exponential increase in the amount of health-related data being generated by smart devices. Requisite for proper mining of the data for knowledge discovery and therapeutic product development is very essential. The expanding field of big data analytics is playing a vital role in healthcare practices and research. A large number of people are being affected by Alzheimer's Disease (AD), and as a result, it becomes very challenging for the family members to handle these individuals. The objective of this chapter is to highlight how deep learning can be used for the early diagnosis of AD and present the outcomes of research studies of both neurologists and computer scientists. The chapter gives introduction to big data, deep learning, AD, biomarkers, and brain images and concludes by suggesting blood biomarker as an ideal solution for early detection of AD.


2021 ◽  
Author(s):  
PRANJAL KUMAR ◽  
Siddhartha Chauhan

Abstract Big data analysis and Artificial Intelligence have received significant attention recently in creating more opportunities in the health sector for aggregating or collecting large-scale data. Today, our genomes and microbiomes can be sequenced i.e., all information exchanged between physicians and patients in Electronic Health Records (EHR) can be collected and traced at least theoretically. Social media and mobile devices today obviously provide many health-related data regarding activity, diets, social contacts, and so on. However, it is increasingly difficult to use this information to answer health questions and, in particular, because the data comes from various domains and lives in different infrastructures and of course it also is very variable quality. The massive collection and aggregation of personal data come with a number of ethical policy, methodological, technological challenges. It should be acknowledged that large-scale clinical evidence remains to confirm the promise of Big Data and Artificial Intelligence (AI) in health care. This paper explores the complexities of big data & artificial intelligence in healthcare as well as the benefits and prospects.


2022 ◽  
pp. 979-992
Author(s):  
Pavani Konagala

A large volume of data is stored electronically. It is very difficult to measure the total volume of that data. This large amount of data is coming from various sources such as stock exchange, which may generate terabytes of data every day, Facebook, which may take about one petabyte of storage, and internet archives, which may store up to two petabytes of data, etc. So, it is very difficult to manage that data using relational database management systems. With the massive data, reading and writing from and into the drive takes more time. So, the storage and analysis of this massive data has become a big problem. Big data gives the solution for these problems. It specifies the methods to store and analyze the large data sets. This chapter specifies a brief study of big data techniques to analyze these types of data. It includes a wide study of Hadoop characteristics, Hadoop architecture, advantages of big data and big data eco system. Further, this chapter includes a comprehensive study of Apache Hive for executing health-related data and deaths data of U.S. government.


Author(s):  
Pavani Konagala

A large volume of data is stored electronically. It is very difficult to measure the total volume of that data. This large amount of data is coming from various sources such as stock exchange, which may generate terabytes of data every day, Facebook, which may take about one petabyte of storage, and internet archives, which may store up to two petabytes of data, etc. So, it is very difficult to manage that data using relational database management systems. With the massive data, reading and writing from and into the drive takes more time. So, the storage and analysis of this massive data has become a big problem. Big data gives the solution for these problems. It specifies the methods to store and analyze the large data sets. This chapter specifies a brief study of big data techniques to analyze these types of data. It includes a wide study of Hadoop characteristics, Hadoop architecture, advantages of big data and big data eco system. Further, this chapter includes a comprehensive study of Apache Hive for executing health-related data and deaths data of U.S. government.


2021 ◽  
Vol 12 (1) ◽  
pp. 114-139
Author(s):  
Hassan I. Ahmed ◽  
Abdurrahman A. Nasr ◽  
Salah M. Abdel-Mageid ◽  
Heba K. Aslan

Nowadays, Internet of Things (IoT) is considered as part our lives and it includes different aspects - from wearable devices to smart devices used in military applications. IoT connects a variety of devices and as such, the generated data is considered as ‘Big Data'. There has however been an increase in attacks in this era of IoT since IoT carries crucial information regarding banking, environmental, geographical, medical, and other aspects of the daily lives of humans. In this paper, a Distributed Attack Detection Model (DADEM) that combines two techniques - Deep Learning and Big Data analytics - is proposed. Sequential Deep Learning model is chosen as a classification engine for the distributed processing model after testing its classification accuracy against other classification algorithms like logistic regression, KNN, ID3 decision tree, CART, and SVM. Results showed that Sequential Deep Learning model outperforms the aforementioned ones. The classification accuracy of DADEM approaches 99.64% and 99.98% for the UNSW-NB15 and BoT-IoT datasets, respectively. Moreover, a plan is proposed for optimizing the proposed model to reduce the overhead of the overall system operation in a constrained environment like IoT.


Author(s):  
Manbir Sandhu ◽  
Purnima, Anuradha Saini

Big data is a fast-growing technology that has the scope to mine huge amount of data to be used in various analytic applications. With large amount of data streaming in from a myriad of sources: social media, online transactions and ubiquity of smart devices, Big Data is practically garnering attention across all stakeholders from academics, banking, government, heath care, manufacturing and retail. Big Data refers to an enormous amount of data generated from disparate sources along with data analytic techniques to examine this voluminous data for predictive trends and patterns, to exploit new growth opportunities, to gain insight, to make informed decisions and optimize processes. Data-driven decision making is the essence of business establishments. The explosive growth of data is steering the business units to tap the potential of Big Data to achieve fueling growth and to achieve a cutting edge over their competitors. The overwhelming generation of data brings with it, its share of concerns. This paper discusses the concept of Big Data, its characteristics, the tools and techniques deployed by organizations to harness the power of Big Data and the daunting issues that hinder the adoption of Business Intelligence in Big Data strategies in organizations.


Author(s):  
Pijush Kanti Dutta Pramanik ◽  
Saurabh Pal ◽  
Moutan Mukhopadhyay

Like other fields, the healthcare sector has also been greatly impacted by big data. A huge volume of healthcare data and other related data are being continually generated from diverse sources. Tapping and analysing these data, suitably, would open up new avenues and opportunities for healthcare services. In view of that, this paper aims to present a systematic overview of big data and big data analytics, applicable to modern-day healthcare. Acknowledging the massive upsurge in healthcare data generation, various ‘V's, specific to healthcare big data, are identified. Different types of data analytics, applicable to healthcare, are discussed. Along with presenting the technological backbone of healthcare big data and analytics, the advantages and challenges of healthcare big data are meticulously explained. A brief report on the present and future market of healthcare big data and analytics is also presented. Besides, several applications and use cases are discussed with sufficient details.


Sign in / Sign up

Export Citation Format

Share Document