Smart Microbial Sources Management for Treatment

Author(s):  
Hossein Farraji ◽  
Amin Mojiri ◽  
Mohd Suffian Yusoff

Overpopulation and industrialization are the major sources of wastewater in human society and water resources. Food production industries and municipal solid waste are the root origin of wastewaters containing palm oil mill effluent and municipal landfill leachate. Traditional treatment method for such highly polluted wastewaters cannot meet environmental discharge. Finding an advanced and smart decontamination process for these types of polluted wastewater could be considered as a capable method for suitable adaptation with overpopulation in current condition and future coming decades. This chapter illustrates critical points through the application of traditional treatment techniques such as acclimatization in palm oil mill effluent and municipal landfill leachate as the most straightly polluted agro-industrial effluent.

2017 ◽  
Vol 103 ◽  
pp. 06008 ◽  
Author(s):  
Mohammed J.K. Bashir ◽  
Jing Wei Wong ◽  
Sumathi Sethupathi ◽  
Ng Choon Aun ◽  
Lim Jun Wei

Author(s):  
Che Zulzikrami Azner Abidin ◽  
Fahmi Muhammad Ridwan ◽  
Abdul Haqi Ibrahim ◽  
Nazerry Rosmady Rahmat ◽  
Nur Farah Mohamed Hussein ◽  
...  

2019 ◽  
Vol 6 (1) ◽  
pp. 340-354 ◽  
Author(s):  
Ivy Tan Ai Wei

It is inevitable that the manufacturing process of palm oil is accompanied by the generation of a massive amount of high strength wastewater, namely palm oil mill effluent (POME), which could pose serious threat to the aquatic environment. POME which contains high organic compounds originating from biodegradable materials causes water pollution if not properly managed. Palm oil industries are facing the challenges to make ends meet in the aspects of natural assurance, financial reasonability and development sustainability. It is therefore crucial to seek a practical solution to achieve the goal of environmental protection while continuing the economic sustainability. Phytoremediation has been proven as a potential method for removal or degradation of various hazardous contaminants. However, research on phytoremediation of POME using Eichhornia crassipes (E. crassipes) is still limited. This study aims to determine the feasibility of applying phytoremediation technique using E. crassipes for POME treatment. The effects of pH, plant:POME ratio and retention time on the biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solid (TSS) of POME were investigated. The highest BOD removal of 92.6% was achieved after 21 days retention time at pH 4 with plant:POME ratio of 1:20 kg/L. The highest COD removal of 20.7% was achieved after 14 days retention time at pH 6 with plant:POME ratio of 1:20 kg/L. Phytoremediation using E. crassipes was shown to be a promising eco-friendly technique for POME treatment, and is therefore recommended as a good alternative treatment solution for this industrial effluent.


2015 ◽  
Vol 17 (3) ◽  
pp. 439-450 ◽  

<div> <p>Raw municipal landfill leachate is extremely polluted wastewater and it regards as one of the drawbacks of the sanitary landfill treatment method. If the untreated landfill leachate is discharged to the natural environment, a great problem for the environment can be created, particularly for the water resources. To assess fresh leachate; collection, analyzing for various parameters, and comparing with the standards are essential. Thus, this study was purposed to examine the characteristics of different landfill leachate samples collected from three tropical landfill sites. The results of the formed leachate at the anaerobic Kulim Sanitary Landfill, semi-aerobic Pulau Burung Landfill Site, and anaerobic Kuala Sepetang landfill leachate in the northern region of Malaysia have been analyzed for 27 parameters and compared. The studied parameters in the present study were&nbsp; phenols, zeta potential, oxidation-reduction potential (ORP), chemical oxygen demand (COD), biochemical oxygen demand (BOD<sub>5</sub>),&nbsp; heavy metals, nitrogen compounds, salinity, electrical conductivity etc. For checking the risks of the leachate on the environment, the obtained results were compared with the Malaysia Standards. In addition, the leachate treatment opportunities upon the characterization are highlighted in this study. The effectiveness of various applications in treating leachate collected from municipal landfill was presented and discussed. It could be concluded that the knowledge of leachate quality is particularly significant in choosing an appropriate treatment techniques</p> </div> <p>&nbsp;</p>


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 566
Author(s):  
Ruwaida Abdul Wahid ◽  
Wei Lun Ang ◽  
Abdul Wahab Mohammad ◽  
Daniel James Johnson ◽  
Nidal Hilal

Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.


Sign in / Sign up

Export Citation Format

Share Document