Flood Frequency Analysis Using Bayesian Paradigm

Author(s):  
Ishfaq Ahmad ◽  
Alam Zeb Khan ◽  
Mirza Barjees Baig ◽  
Ibrahim M. Almanjahie

At-site flood frequency analysis (FFA) of extreme hydrological events under Bayesian paradigm has been carried out and compared with frequentist paradigm of maximum likelihood estimation (MLE). The main objective of this chapter is to identify the best approach between Bayesian and frequentist one for at-site FFA. As a case study, the data of only two stations were used, Kotri and Rasul, and Bayesian and MLE approaches were implemented. Most commonly used tests were applied for checking initial assumptions. Goodness of fit (GOF) tests were used to identify the best model, which indicated that the generalized extreme value (GEV) distribution appeared to be best fitted for both stations. Under Bayesian paradigm, quantile estimates are constructed using Markov Chain Monte Carlo (MCMC) simulation method for their respective returned periods and non-exceedance probabilities. For MCMC simulations, as compared to other sampler, the M-H sampling technique was used to generate a large number of parameters. The analysis indicated that the standard errors of the parameters' estimates and ultimately the quantiles' estimates using Bayesian methods remained less as compared to maximum likelihood estimation (MLE), which shows the superiority of Bayesian methods over conventional ones in this study. Further, the safety amendments under two techniques were also calculated, which also show the robustness of Bayesian method over MLE. The outcomes of these analyses can be used in the selection of better design criteria for water resources management, particularly in flood mitigation.

2019 ◽  
Vol 1 (12) ◽  
Author(s):  
Mahmood Ul Hassan ◽  
Omar Hayat ◽  
Zahra Noreen

AbstractAt-site flood frequency analysis is a direct method of estimation of flood frequency at a particular site. The appropriate selection of probability distribution and a parameter estimation method are important for at-site flood frequency analysis. Generalized extreme value, three-parameter log-normal, generalized logistic, Pearson type-III and Gumbel distributions have been considered to describe the annual maximum steam flow at five gauging sites of Torne River in Sweden. To estimate the parameters of distributions, maximum likelihood estimation and L-moments methods are used. The performance of these distributions is assessed based on goodness-of-fit tests and accuracy measures. At most sites, the best-fitted distributions are with LM estimation method. Finally, the most suitable distribution at each site is used to predict the maximum flood magnitude for different return periods.


1997 ◽  
Vol 1 (2) ◽  
pp. 357-366 ◽  
Author(s):  
D. A. Jones

Abstract. A new approach is developed for the specification of the plotting positions used in the frequency analysis of extreme flows, rainfalls or similar data. The approach is based on the concept of maximum likelihood estimation and it is applied here to provide plotting positions for a range of problems which concern non-standard versions of annual-maximum data. This range covers the inclusion of incomplete years of data and also the treatment of cases involving regional maxima, where the number of sites considered varies from year to year. These problems, together with a not-to-be-recommended approach to using historical information, can be treated as special cases of a non-standard situation in which observations arise from different statistical distributions which vary in a simple, known, way.


2011 ◽  
Vol 48 (A) ◽  
pp. 367-378 ◽  
Author(s):  
Paul Embrechts ◽  
Thomas Liniger ◽  
Lu Lin

A Hawkes process is also known under the name of a self-exciting point process and has numerous applications throughout science and engineering. We derive the statistical estimation (maximum likelihood estimation) and goodness-of-fit (mainly graphical) for multivariate Hawkes processes with possibly dependent marks. As an application, we analyze two data sets from finance.


2021 ◽  
Author(s):  
Mohamad Haytham Klaho ◽  
Hamid R. Safavi ◽  
Mohamad H. Golmohammadi ◽  
Maamoun Alkntar

Abstract Historically, severe floods have caused great human and financial losses. Therefore, the flood frequency analysis based on the flood multiple variables including flood peak, volume and duration poses more motivation for hydrologists to study. In this paper, the bivariate and trivariate flood frequency analysis and modeling using Archimedean copula functions is focused. For this purpose, the annual flood data over a 55-year historical period recorded at the Dez Dam hydrometric station were used. The results showed that based on goodness of fit criteria, the Frank function built upon the couple of the flood peak-volume and the couple of the flood peak-duration as well as the Clayton function built upon the flood volume-duration were identified to be the best copula families to be adopted. The trivariate analysis was conducted and the Clayton family was chosen as the best copula function. Thereafter, the common and conditional cumulative probability distribution functions were built and analyzed to determine the periodic "and", "or" and "conditional" bivariate and trivariate flood return periods. The results suggest that the bivariate conditional return period obtained for short-term periods is more reliable than the trivariate conditional return period. Additionally, the trivariate conditional return period calculated for long-term periods is more reliable than the bivariate conditional return period.


2019 ◽  
Vol 17 (2) ◽  
Author(s):  
Minh H. Pham ◽  
Chris Tsokos ◽  
Bong-Jin Choi

The generalized Pareto distribution (GPD) is a flexible parametric model commonly used in financial modeling. Maximum likelihood estimation (MLE) of the GPD was proposed by Grimshaw (1993). Maximum likelihood estimation of the GPD for censored data is developed, and a goodness-of-fit test is constructed to verify an MLE algorithm in R and to support the model-validation step. The algorithms were composed in R. Grimshaw’s algorithm outperforms functions available in the R package ‘gPdtest’. A simulation study showed the MLE method for censored data and the goodness-of-fit test are both reliable.


2019 ◽  
Vol 11 (1) ◽  
pp. 1-13
Author(s):  
R. Shanker ◽  
K. K. Shukla

In this paper the nature and behavior of its coefficient of variation, skewness, kurtosis and index of dispersion of Poisson- weighted Lindley distribution (P-WLD), a Poisson mixture of weighted Lindley distribution, have been proposed and the nature and behavior have been explained graphically. Maximum likelihood estimation has been discussed to estimate its parameters. Applications of the proposed distribution have been discussed and its goodness of fit has been compared with Poisson distribution (PD), Poisson-Lindley distribution (PLD), negative binomial distribution (NBD) and generalized Poisson-Lindley distribution (GPLD).


Sign in / Sign up

Export Citation Format

Share Document